CLASSICAL VERIFICAITON OF QUANTUM COMPUTATIONS
\rightarrow QPIP definition: - Prover \mathbb{P} capable of BQP computations.

- Verifier V capable of BPP computations

Unitary transformation, Measuremads Quantum operations on" k " quits

- \mathbb{P}, V exchange poly $(|x|)$ classical messages, " k " quits of quantum messages.
\rightarrow Result I: QPIP $=B Q P$
Two parts
(i) $Q P I P_{1} \subseteq B Q P \longrightarrow$ Trivial proof
(ii) BQP \subseteq PIP \rightarrow Mormae 115,16]
- The proof uss [Kitaev 03] [Biamonte '08]'s results on QMA-completeness of the 5-LOCAL HAMILTONIAN and the 2-LOCAL HAMILTONIAN problems respectively.
- The idea is to convert an instance $x \in L$ of BQP to hamiltonian H_{x} (that is 2-local).
\mathbb{P} determines the ground state of H_{x} and sends to V just the quit that is to be measured. (only 2 times)
accordingly determines the ground energy of this hamiltonian.
\rightarrow Result II: QPIP $=$ BQP (true under contain LWE assumption)
Two parts
(i) $Q P I P_{0}$
(ii) BQP \subseteq PIP \longrightarrow Mahador '18]
builds upon the proof of Result I.
- The reduction in previous proof involves a single measurement by \mathbb{V} which is now outsourced to the QPIP famenort.
- RESULT I:[Morimae '5` 16]
(proof of $B Q P \subseteq$ PIP P_{1})
\rightarrow We make use of previous results
[Kitaer 03] QMA-completeness of 5-LOCAL HAMILTONIAN
[Kempe "05] QMA-completeness of 2-LOCAL HAMILTONIAN
[Biamonte 'O8] QMA-completeness of 2-LOCAL 2X HAMIITONIAN
\rightarrow-Take any $L \in B Q P$.
- For an ip instance $x \in L$?
$-L \in B Q P \subseteq Q M A \Rightarrow T L \in B Q P \subseteq Q M A$.
- Let V_{x}, \bar{V}_{x} be the verification circuits of $L, T L$ resp.
- Since $L, \rightarrow L \in B Q P$, the verification certificate state for both of V_{x}, \bar{V}_{x} will be an all $|0\rangle$ trivial state.
\rightarrow Reduce the instances $V_{x}, \overline{V_{x}}$ using reduction R 2-LOCAL $2 \times$ HAMILTONIAN instances H_{x}, \bar{H}_{x} respectively
\rightarrow-Both V and \mathbb{P} know $H_{x}, \overline{H_{x}}$
- \mathbb{P} can construct the eigen state $|\eta\rangle$ (orr $\bar{\eta})$ of H_{x} (or \vec{H}_{x}) from the trivial certificate $|\xi\rangle=|0\rangle^{\circ}$
(using reduction R)
$\rightarrow-\mathbb{P}$ uses V_{x}, \bar{V}_{x} to find out if $x \in L$ or $x \in-L$.
- \mathbb{P} conveys the information to V and will subsequently to try to prove his claim.
- If $x \in L$, they use $V_{x}, H_{x},|\eta\rangle$ and if $x \in \sim L$, they use $\bar{V}_{x}, \bar{H}_{x},|\bar{\eta}\rangle$
\leftrightarrows Using 2-Local hamiltonian H_{x} (or $\left.\Pi_{x}\right) V$ decides which location and bases to measure $\mid \eta>$ (or $\bar{n}\rangle$
- \mathbb{P} sends all the quits of $|\eta\rangle$ (or $\bar{\eta}\rangle$) to w onetyone
- performs the some measurements to decide.

In more detail.
2-LOCAL $2 \times$ HAMILTON TAN Problem (Language L_{21})

$$
H_{2 x}=\sum_{i} h_{i} z_{i}+\sum_{i} \Delta_{i} x_{i}+\sum_{i<j} J_{i j} z_{i} x_{j}+\sum_{i j}^{L} k_{i j} x_{i} z_{j}
$$

with $h_{i}, \Delta_{i}, J_{i j}, k_{j} \in \mathbb{R}$

$$
\begin{array}{ll}
x \in L_{2 H} \Rightarrow \exists|\eta\rangle & \langle n| H_{2 x}|\eta\rangle \leqslant a \\
x \notin L_{2 H} \Rightarrow \forall|\eta\rangle & \langle\eta| H_{2 x}|\eta\rangle \geqslant b \\
b-a \geqslant \frac{1}{\text { poly|x| }} &
\end{array}
$$

\rightarrow the $L \in B Q P,(-L \in B Q P)$
we want to show $L \in$ PIP $1 \quad(\therefore$ BQPSQPIP $)$
For any instance $x \in L$? or $x \in-L$?
\exists verification chalets V_{x}, \dot{V}_{x} respectively.
with trivial verification certificates $10 \%(\because L,-L \in B Q P)$
\rightarrow Take a reduction $R: Q M A \longrightarrow Z$-locAL HAMLITONIAN $R: V_{x} \longmapsto H_{x}$

$$
\left(100^{x} \longrightarrow \mid m_{g} 7\right)
$$

$\rightarrow \mathbb{P}, V$ know H_{x}
Only \mathbb{P} knows $\left.\left|\eta_{0}\right\rangle=R(10\rangle^{\infty}\right)$ because w has only one quit.

$$
\rightarrow H_{x}=\sum_{i} h_{i} z_{i}+\sum_{i} \Delta_{i} x_{i}+\sum_{i j} T_{i j} z_{i} x_{j}+\sum_{i j} k_{i j} x_{i} z_{j}
$$

(from defoe of 2 -local $2 x$ hamiltonian)

$$
\Rightarrow H_{x}=\sum_{s} d_{s} d_{G \text { is real }} \quad \text { (where } s \text { is } z_{i}, x_{i}, z_{i} x_{j} \text { or } x_{i} z_{j} \text {) }
$$

$$
\begin{aligned}
H_{x}^{\prime} & =H_{x}+\sum_{s}\left|d_{s}\right| I \\
& =\sum_{s}\left|d_{s}\right|\left(I+\operatorname{sign}\left(d_{s}\right) S\right) \\
& =\sum_{s} Z\left|d_{s}\right| P_{s} \quad\left[P_{s}=\frac{I+\operatorname{sign}\left(d_{s}\right) S}{2}\right] \\
H_{x} & :=\frac{1}{2 \sum_{s}\left|d_{s}\right|} H_{x}^{\prime}=\sum_{s} \prod_{s} P_{s}
\end{aligned}
$$

P_{s} is a projection operator on one or two quits If involves projection in $\left.\{|0\rangle\langle 01, \mid 1\rangle\langle 1|\}_{\rho}|1|+\right\rangle\langle+1$ or 1$\rangle\langle-1\}$ on exactly two quits.
V. measures in one of those projector for the required quits. (one a two)
If the product of measurement equals $-\operatorname{sign}\left(d_{s}\right)$,
V returns iv v else " x "

$$
\left(\sigma\langle\bar{\eta}| \bar{\pi}_{s} \bar{P}_{s}|\bar{\eta}\rangle\right)
$$

\rightarrow This procedure is repeated k times, $k=$ poly $(|x|)$. If more than half of then result in " \checkmark ", $1 /$ accepts $x \in L$
(or equivalently $x \notin L$)

Can we outsource this measurement step to the Prover? [Mahadev '18]
$\overline{=}$ RESNLT II: [Mahadev ' 18] \qquad
BP $\subseteq Q P I P_{0}$ (under contain assumptions)
\rightarrow KEY IDEA:
Develop a framework where \mathbb{P} has a quantum state S, and V is able to measure ρ over a z-local projection operator in Z, X bases. (denoted by h)

Importantly, the statistics of the measurement outcomes for this prover $\mathbb{P}, D_{P,}$ should be close to the statistics of an actual P,h measurement OF SOME STATE ρ^{\prime} in the bares ' h ' $D_{s^{\prime}, h}\left(\rho=s^{\prime}\right.$ for honest)

$$
D_{\mathbb{P}, h} \sim D_{S^{\prime}, h}
$$

\rightarrow For this purpose, we employ a MEASUREMENT Protocol. ROUGH IDEA: provers

ROUGH IDEA:

- V prepares a basis of measurement, according to the Pauli operator S.
This basis is only for two quits. $h_{i}= \begin{cases}1 & X \text { basis } \\ 0 & \geq \text { basis }\end{cases}$ ($h_{i}=0$ for other quits)
- For $(c=1$ to $n)$:
- <series of steps>-
\checkmark decides to perform MEASUREMENT ROUND or TEST ROUND MEASUREMENT TEST
- steps for V to get
- a check on malicious behaviour measurement result. of \mathbb{P}.

SOME PREREQUISITES
TRAPDOOR CLAW-FREE FAMILIES: $F=\left\{f_{E b}: x \rightarrow y\right\}_{b \in\{0,1\}}$
(1) $f_{k, 0}, f_{k, 1}$ are INJECTIVE and have the SAME RANGE
(2) INVERTIBLE using trapdoor t_{0}. [For $\left.y=f_{k 6}(x), I N V_{j}\left(t_{k}, b, y\right)=x\right]$
for BPP machine
$\left(x_{0}, x_{1}\right)$ is a dow when $f_{R 0}\left(x_{0}\right)=f_{R 1}\left(x_{1}\right)$
(3) CLAW-FREE: Hard to find $x_{0}, x_{1} \in X$ sit. $\left(x_{0}, x_{1}\right)$ is a claw. for BQP
(4) ADAPTIVE-HARDCORE-BIT FROPERTY:

Hard for BQP machine to fend $b, x_{b} \in\{0,1\} \times X$ and $d \in\{0,1\}^{w^{W}}$ sit. $d \cdot\left(x_{0}+x_{1}\right)=0$ with non-negligible advantage over $\frac{1}{2}$. $G\left(x_{0}, x_{1}\right)$ is a claw
(5) EPFICIENTLY GENERATED: Efficient (BPP) algorithm GEN G $_{F}$

$$
\left(k, \epsilon_{k}\right) \lessdot G E N_{F}\left(1^{\lambda}\right)
$$

(6) Efficient BQP procedure $S A M P_{F}$ that for ip x, k, b gives

$$
|x\rangle|0\rangle \underset{\sin p_{F}(k, b)}{ }|x\rangle\left|f_{k_{b}}(x)\right\rangle
$$

TRAPDOOR INSECTIVE FAN FAMILIES: $\left.\quad g=\left\{g_{k b}: x \rightarrow y\right\}_{b \in\{01\}}\right\}$
(1) $g_{k \leq b}$ is INJECTIVE and has DISJOINT range with $g_{k, b \oplus 1}$
(2) INVERTIBLE using a trapdoor $t_{R}\left[\right.$ For $\left.y=g_{k b}(x), I N V_{G}(t, b, b, y)=x\right]$
(3) EPFICIENTLY GENERATED: Efficient (BPP) algorithm GENV

$$
\left(k, \epsilon_{k}\right) \longleftarrow G E N_{G}\left(1^{\lambda}\right)
$$

(7) Efficient BQP procedure $S M M P_{G}$ that for $i / p x, k, b$ gives

$$
\left.|x\rangle|0\rangle \underset{G M P}{G \cdot G(k, b)}|x\rangle \lg _{k b}(x)\right\rangle
$$

\rightarrow INJECTIVE INVARIANCE:
Given fan key k, it is computationally hard (for BQP) to determine whether it is from a CLAW-FREE FAMILY or INJECTIVE FYN FAMILY.
\rightarrow Unfortunately we do not know to construct a TRAPDOOR Claw- FREE FXN FAMILY. We'll address this later.
\rightarrow For now, ASSUME a TrapdOor Claw Free Family F exists which statisfies.
(i) conditions (1), (2, (3), (4),(5),(6) in prev. page
(ii) is infective invariant with a TRAPDOOR INJECTVE FXN FAMILy E.
\rightarrow Design a MEASUREMENT PRotocol under this assumption.

INITIAL CONDITIONS:
$\rightarrow \mathbb{V}$ decides the basis for measurement $h \in\{0,1\}^{n}$
$\rightarrow \mathbb{P}$ has a state ρ

$$
h_{i}=0 \rightarrow \mathbb{Z} \text { basis, } h_{i}=1 \rightarrow X \text { bars }
$$

PROTOCOL:
For $i=1$ to n
\mathbb{V} has $h_{i}=0$ or 1
\mathbb{P} has $\rho_{i}=\sum_{b} \alpha_{b}|b\rangle$ (not necessarily pare. but for illustration purpure)
(1) V samples $k_{i}, t_{k_{i}}$ from G if $h_{i}=0$ for $i=1$ to n
(2) V sends k_{i} to \mathbb{P} for $i=1$ to n
(3) \mathbb{P} constructs the following state using Si_{i}

$$
\begin{array}{ll}
\frac{1}{\sqrt{|x|}} \sum_{b} \sum_{x \in x} \alpha_{b}|b\rangle|x\rangle\left|g_{k b}(x)\right\rangle & \text { if } h_{i}=0 \\
\frac{1}{\sqrt{|x|}} \sum_{b} \sum_{x \in x} \alpha_{b}|b\rangle|x\rangle\left|f_{k b}(x)\right\rangle & \text { if } h_{i}=1 \\
\text { Registers (1) (2) (3) } &
\end{array}
$$

(4) \mathbb{P} measures register (3) to get result " y_{i} " for $i=1$ ton
(5) \mathbb{P} commits to " y_{i} " by sending it to \mathbb{V} for $i=1$ ton

The state in (1), (2) is now

$$
|b\rangle\left|x_{b y}\right\rangle \quad \text { if } h_{i}=0 \quad \sum_{b} \alpha_{b}|b\rangle\left|x_{b y}\right\rangle \quad \text { if } h_{i}=1
$$

(6) V decides to perform either a MEASUREMENT ROUND or TEST ROUND

The yellow coloured states in this page are only for illustrative purposes. and are true only when the th quit is a pure state.

MEASUREMENT ROUND
(M1) \mathbb{P} measures registers (1), (2) in X basis.
(MI) \mathbb{P} sends $b_{i}^{\prime}, d_{i}^{\prime}$ to $V^{\text {to }}$
to get results $b_{i}^{\prime}, d_{i}^{\prime}$ resp. for $i=1$ ton. for $i=1$ to n
(M3) If $\left(h_{i}=0\right) \quad \mathbb{V}$ ignores $b_{i}^{\prime}, d_{i}^{\prime}$
\mathbb{V} computes $b_{i}, x_{b_{i}, y}=\operatorname{IN} V_{G}\left(y_{i}, t_{k_{i}}\right)$
1 stores $m_{i}=b_{i}$
If $\left(h_{i}=1\right), V$ computes $x_{0 y}, x_{1 y}=I N_{F}\left(y_{i}, t_{k_{i}}\right)$
V stores $m_{i}=b_{i}^{\prime} \oplus d_{i}^{\prime} \cdot\left(x_{0 y} \oplus x_{y y}\right)$
$\rightarrow m_{i}$ is the measurement result.
TEST ROUND
(11) \mathbb{P} measures registers (1), (2) in Z basis
to get results $b_{i}^{\prime}, x_{i}^{\prime}$ resp.
(TI) \mathbb{P} sends $b_{i}^{\prime} x_{i}^{\prime}$ to V
(IV) \mathbb{P} sends $b_{i}^{\prime}, x_{i}^{\prime}$ to \mathbb{V}
(T3) If $\left(h_{i}=0\right) \vee$ computes $b_{i}, x_{b_{i} y}=\operatorname{invert}\left(y_{i}, t_{k i}\right)$
V tests if $b_{i}, x_{i y}==b_{i}^{\prime}, x_{i}^{\prime}$?
If $\left(h_{i}=1\right) \vee$ computes $x_{0 y}, x_{1} y=\operatorname{invert}\left(y_{i}, t_{k_{i}}\right)$
\checkmark tests if $\left(x_{i}^{\prime}==x_{0}\right.$ AND $\left.\quad b_{i}^{\prime}==0\right)$

$$
\left.\left(x_{i}^{\prime}=x_{1} \quad \text { AND } \quad b_{i}^{\prime}==1\right) ?\right]
$$

$\rightarrow \mathbb{V}$ aborts the protocol (or rejects the input string) if the test fails.

ILLUSTRATION OF MEASUREMENT PROTOCO
For illustration purpose, we take an honest prover P_{0} and the state s_{i} in its pure form.

$$
s_{i}=\sum_{b} \alpha_{b}|b\rangle
$$

CASE I: $\quad h_{i}=0$
Apter step (3), \mathbb{P}_{0} has state $\frac{1}{\sqrt{|x|}} \sum_{b} \sum_{x} \alpha_{b}|b\rangle|x\rangle\left|g_{b}(x)\right\rangle$
After step (5), \mathbb{P}_{0} has $\left|\alpha_{0}\right|^{2}|\alpha|^{2}|b\rangle\left|x_{b y}\right\rangle$ forsomeb W.p. $\left|\alpha_{0}\right|^{2},\left|\alpha_{1}\right|^{2}$ rep.

In MEASUREMENT ROUND:
After step (M1), IP S result $\left(b_{i}^{\prime} d_{i}^{\prime}\right)$ is irrelevant
After step (M3), $m_{i}=0$ or 1 Wp. $\left|k_{0}\right|^{2},\left|\alpha_{1}\right|^{2}$ reap.

$$
\begin{aligned}
\therefore D_{B_{b}, h_{i}=0} & =\left\{\left|\alpha_{d}\right|^{2},{K_{1}}^{2}\right\} \\
& \left.=D_{\beta, h_{i}=0} \quad\left\{\rho_{i}=\sum_{b} \alpha_{b}| |\right\rangle\right\}
\end{aligned}
$$

The measurement probabilities mode.
In TEST round,
After $\operatorname{step}(T 1), \mathbb{P}_{0}$ gets $b_{i}^{\prime}, x_{i}^{\prime}=b, x_{b y}$.
(T3), The test parses

CASE II: $\quad h_{i}=1$
After step (3), $\mathbb{R}_{0}^{\prime} s$ state is $\frac{1}{\sqrt{|x|}} \sum_{b} \sum_{x} \alpha_{b}|b\rangle|x\rangle\left|f_{b b}(x)\right\rangle$
$\operatorname{step}(5), \mathbb{P}_{0}^{\prime} s$ state is $\sum_{b} \alpha_{b}|b\rangle\left|x_{b y}\right\rangle$
In measurement round.
After step (M1), measuring in X basis
measuring $\sum_{b} \alpha_{b} H|b\rangle \otimes H\left|x_{b y}\right\rangle$ in $Z_{\text {bars }}$

$$
\begin{aligned}
& \sum_{b} \alpha_{b} H|b\rangle \otimes H x^{x_{0}}|0\rangle \\
& =\sum_{b} \alpha_{b} H|b\rangle \otimes z^{x_{y}} H|0\rangle \\
& =\sum_{d \in x} \sum_{b} \alpha_{b} H|b\rangle \otimes z^{x_{b y}} \frac{|d\rangle}{\sqrt{|x|} \mid} \\
& =\sum_{d \in x} \frac{1}{\sqrt{|x|}} \sum_{b} \alpha_{b}(-1)^{d \cdot x_{b y}} H|b\rangle \otimes|d\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{d \in x}(1 \otimes I)(-1)^{d x y_{b}} \sum_{b} z^{d\left(x_{y}+x_{x}\right)_{x}|b\rangle \otimes \mid D} \sqrt{\| X I}
\end{aligned}
$$

Results in final state

$$
\begin{aligned}
& \sum_{d \in x} \frac{1}{\sqrt{|x|}} x^{d\left(\alpha_{y}+x_{1} y\right)}\left[\sum_{b} \alpha_{b}^{\prime}|b\rangle\right] \otimes z^{x_{a y}}|d\rangle \\
{\left[\alpha_{0}^{\prime}=\frac{\alpha_{0}+\alpha_{0}}{\sqrt{2}}, \alpha_{1}^{\prime}=\frac{\alpha_{0}-x_{0}}{\sqrt{2}}\right]=} & \sum_{d \in x} \sum_{b} \frac{\alpha_{b}^{\prime}}{\sqrt{|x|}}\left|b \oplus d \cdot\left(x_{0 y}+x_{y}\right)\right\rangle \otimes|d\rangle
\end{aligned}
$$

Measuring registers (1), (2) to be $b_{i}^{\prime}, d_{i}^{\prime}$

$$
b_{i}^{\prime}=\left\{\begin{array}{lll}
0+d \cdot\left(x_{0 y}+x_{1 y}\right) & \text { wp. } & \left|\alpha_{0}^{\prime}\right|^{2}=\left|\frac{\alpha_{0}+x_{i}}{\sqrt{2}}\right|^{2} \\
1+d \cdot\left(x_{0 y}+x_{1 y}\right) & \text { wp. } & \left|\alpha_{1}^{\prime}\right|^{2}=\left|\frac{\alpha_{0}-x_{1}}{\sqrt{2}}\right|^{2}
\end{array}\right.
$$

After step (M3),

$$
\begin{aligned}
& m_{i}^{\prime}=b_{i}^{\prime}+d \cdot\left(x x_{y}+x_{1} y\right)= \begin{cases}0 & \text { wp. } \\
1 & \left|\alpha_{0}^{\prime}\right|^{2}=\left|\frac{\alpha_{0}+x_{i}}{\sqrt{2}}\right|^{2} \\
1 & \text { wp. }\left|\alpha_{1}^{\prime}\right|^{2}=\left|\frac{\alpha_{0}-x_{1}}{\sqrt{2}}\right|^{2}\end{cases} \\
& \Rightarrow D_{\mathbb{P}, h_{i}=1}=\left\{\left|\frac{\alpha_{0}+\alpha_{1}}{\sqrt{2}}\right|^{2},\left|\frac{\alpha_{0}-\alpha_{1}}{\sqrt{2}}\right|^{2}\right\} \\
& =\bigcup_{s_{,}, i=1} \text { protaticies match }\left\{\rho_{i}=\sum_{b} \alpha_{b}|b\rangle\right\}
\end{aligned}
$$

In TEST ROUND,
After $\operatorname{step}(T 1), \mathbb{P}_{0}$ gets $b_{i}^{\prime}, x_{i}^{\prime}=x_{k^{\prime} y}$
In step (T3), V's test passes
The test passes.

GENERAL PROVER BEHAVIOUR \qquad
For honest Prover \mathbb{R}_{0},
\rightarrow Say performs $U_{C O}$ unitary operation on an anclliory State 107 to get state S, where he meanness reg (3) in Z basis
For General prover P,
\rightarrow Performs unitary U_{C} before $U_{c \rho}$
\rightarrow Performs unitary U $_{T}$ before test round (T1)
\rightarrow Performs unitary U_{n} before meawrement round

$\rightarrow U_{T}, U_{M}$ act only on rags (1), (2)
So they commute with measuring "y" in reg (3)

Equivalent Betavovr for General Prover \mathbb{P}
\rightarrow Performs $U_{0}=U_{T} U_{C O} U_{C}$ on initial state $|0\rangle$
\rightarrow If it's a MEASUREMENT ROUND, \mathbb{P} performs $U=U_{M} U_{T}^{\top}$ on his state at that time.
\rightarrow No unitary operation in test round.

\rightarrow General prover P is characterised by $\left(U_{0}, U\right)$
\mathbb{P} characterised by CPTP maps $\left(S_{0}, \rho\right)$
UNDERLYING QUNTUM STATES \qquad How do the states evolve for general prover \mathbb{P} ?
$\longrightarrow \mathbb{P}$ begins with four registers.
Reg (1) of length " n " of committed quits
Reg (2) of length "nw" of preinage registers
Reg (3) of length "nw" of commitment strings
$\operatorname{Reg}(4)$ all auxillary things.
f xn keys $\mid k \hat{k}$, ancillary bilk, measurement results

$$
k^{n}=k_{1} R_{2} \ldots k_{n}
$$

PROTOCOL (A)
(1) Initially \mathbb{P} has an all zero state $|0\rangle^{\text {De }} \otimes\left|k^{n}\right\rangle(1),(2)$
(2) \mathbb{P} performs $\left.\left.U_{0}(10\rangle^{\infty e} \otimes|k\rangle\right)=U_{o k}(10\rangle^{\infty e}\right) \otimes\left|k^{n}\right\rangle$ (3)

$$
\frac{1}{\sqrt{|x|^{n}}} \sum_{b_{1}=\cdots b_{n}} \sum_{x_{1} x_{2} \cdots x_{n}} \alpha_{k b_{1} \cdots b_{n}}\left|b_{1} b_{2} \cdots b_{n}\right\rangle\left|x_{1} x_{2} \cdots x_{n}\right\rangle
$$

$$
\left.\left|g_{k_{1} p_{1}}\left(x_{1}\right) f_{k_{2} b_{2}}\left(x_{2}\right) f_{\frac{k_{3} b_{3}}{}}\left(x_{3}\right) \cdots g_{k_{n k}}\left(x_{n}\right)\right\rangle|k\rangle 10\right\rangle^{e}
$$

$\rightarrow g_{k p_{i}}\left(x_{i}\right)$ or $f_{p_{i}}\left(x_{i}\right)$ depending on $h_{i}=00 r 1$
(3) \mathbb{P} measures $R e g$ (3) completely in Z basis to obtain (4)

$$
\begin{equation*}
y^{n}=\left(y_{1}, y_{2}, \ldots y_{n}\right) \in y^{n} \tag{5}
\end{equation*}
$$

(4) \mathbb{P} sends y^{n} to V
(5) TEST ROUND: \mathbb{P} measures $\operatorname{Reg}(1,12)$
and sends results $t \geqslant$.
one by one for $1 \leqslant i \leqslant n$

MEASUREMENT ROUND:
(6) IP applies unitary U to his state regs (1) ? (2)
(7) \mathbb{P} measwes reds (1) R (2) in X basis. and sends the results $b^{\prime}, d_{i}^{\prime}$ to V one by one for $1 \leq i \leq n$.
$\longrightarrow V$ gets $m_{i}=b_{i}^{\prime} \oplus d_{i} \cdot\left(x_{k_{i} O}+x_{k_{i}}\right)$ or b_{i}^{\prime}
Return $\left(m_{1} m_{2} \ldots m_{n}\right)$
deperinding on $h=0$ or 1
GOAL: To show that the measurement statistics obtained by V for prover \mathbb{P} following Feotocol(A) $=D_{\text {Rh }}$
is equivalent to the measurement slats of measuring SOME quantum state ρ in basis h. : $D_{\rho, h}$

$$
D_{\text {Ph }} \sim D_{\text {sh }}
$$

Towards this goal we Prove
chair I F
For \mathbb{P} characterised by $\left(U_{0}, U\right)$
where U is trivial (U commutes with measwement of reg (1) in Z basis)
$\exists \rho$ st. $D_{\text {P lh }} \sim D_{\text {sh }}$
cain
For all \mathbb{P}^{\prime} characterised by $\left(U_{0}, V\right)$
$\exists \mathbb{P}$ characterised by $\left(\bar{U}_{0}, \bar{U}\right)$ sit. \bar{U} is trinal. and $\quad D_{\mathbb{P}^{\prime}, h} \sim D_{\mathbb{P}, \boldsymbol{L}}$
nummun Proof of Cain I
We construct a series of protocols which all return the same measurement statistics as B, protocol (A)
\rightarrow Protocol (B)

1. For $1 \leqslant i \leq n$, sample $\left(k_{i} t_{k_{i}}\right) \longleftarrow \operatorname{GEN}_{f}\left(1^{\lambda}\right)$
2. Designate reg (1), reg (2), reg(3), reg (4) like in protocol(1)
3. Perform unitary U_{0} on $|0|^{\infty e} \otimes|k\rangle$ to get

$$
\frac{1}{\sqrt{|x|^{n}}} \sum_{b_{1} \cdots b_{n}} \sum_{k_{1} x_{2} \cdots x_{n}} \alpha_{b_{1} \ldots k_{n}}\left|b_{1} b_{2} \ldots b_{n}\right\rangle\left|x_{1} x_{2} \cdots x_{n}\right\rangle \otimes\left|f_{k_{1} p_{1}}\left(x_{1}\right) f_{k_{2} b_{2}}\left(x_{2}\right) \ldots f_{k_{n} b_{n}}\left(x_{n}\right)\right\rangle
$$

4. Measure $n^{\text {reg (3) completely }}$ to get y^{n}
5. Apply unitary U to rags (1)\&(2)
6. Measure reg (2) in x basis to get $d_{1} d_{2} \cdots d_{n} \in\{0,1\}^{\omega}$
7. For $1 \leqslant i \leqslant n$, use $t_{k_{i}}$ to get $x_{0 y_{i}}, x_{1 y_{i}}$

Apply $z^{\prime} d_{i} \cdot\left(x_{o_{i}}+x_{1} y_{i}\right)$ to the ${ }^{\prime+}{ }_{i}$ committed quit in r reg (1)
\rightarrow Define the resulting state as ρ.
\rightarrow Measure the resulting reg (1), each quit onebyone to get m_{i}. Return $\left(m_{1}, m_{2}, \ldots m_{n}\right)$
\rightarrow with statistic $D_{s, h}$.
\rightarrow Observe that the state ρ prepared above is same irrespective of the bases states h.
\rightarrow Protocol (C)

1. For $1 \leqslant i \leq n$, sample $\left(k_{i} t_{k_{i}}\right) \longleftarrow \operatorname{GEN}_{f}\left(1^{i}\right)$
Z. If $h_{i}=0$, forget $t_{k i}$
2. Designate reg (1), reg (2), reg(3), reg(4) like in protocol (1)
3. Perform unitary U_{0} on $\left.\left|0^{\otimes e} \otimes\right| R\right\rangle$ to get

$$
\left.\frac{1}{\sqrt{|x|^{n}}} \sum_{b_{1} b_{2} \cdots b_{n}} \sum_{x_{1} x_{2} \cdots x_{n}} \alpha_{b b_{2} \cdots b_{n}}\left|b_{1} b_{2} \ldots b_{n}\right\rangle\left|x_{1} x_{2} \ldots x_{n}\right\rangle \otimes f_{f_{1} b_{1}}\left(x_{1}\right) f_{k_{b_{2}}}\left(x_{2}\right) \cdots f_{k_{n} b_{n}}\left(x_{n}\right)\right\rangle
$$

5 Measure reg (3) completely to get y^{n}
6 Apply unitary U to rags (1)\&(2)
7 Measure reg (2) in x basis to get $d_{1} d_{2} \cdots d_{n} \in\{0,1\}^{w}$
8 For $1 \leqslant i \leqslant n$,

$$
\rightarrow \text { If }\left(h_{i}=1\right)
$$

use $t_{R_{i}}$ to get $x_{0 y_{i}}, x_{1 y_{i}}$
Apply $z^{d_{i} \cdot\left(x_{0} y_{i}+x_{1} y_{i}\right)}$ to the it committed quit in reg (1)

$$
\rightarrow \text { If }\left(h_{i}=0\right)
$$

Don't do anything.
\rightarrow Define the resulting state as $\rho_{i_{i}}^{(1)}$
\rightarrow Measure the resulting reg (1), each quit one byone to get m_{i}. Return $\left(m_{1}, m_{2}, \ldots m_{n}\right)$
$\xrightarrow{\longrightarrow}$ with statistic $\mathrm{D}_{\rho_{h}}^{(1)}, h$
\rightarrow Unlike ρ of protocol (B), $\rho_{L}^{(\prime)}$ here depends on the basis states.
\rightarrow Protocol (B) differs from Protocol (C) only at $\operatorname{step} 8$ (o) (C)), $\operatorname{step}(\exists)(B)$ when $h_{i}=0$.
where a Z operator is applied in protocol (c). But it doesn't make any difference in the measurement result, since we meature in Z basis iteelf.

$$
\Rightarrow D_{s, h}=D_{s h, h}
$$

\rightarrow Protocol (1)

1. For $1 \leqslant i \leqslant n$,

$$
\left(k_{i}, t_{k_{i}}\right) \longleftarrow \operatorname{GEN}_{f}\left(1^{\lambda}\right) \quad \text { if } h_{i}=1
$$

$-\left(k_{i}, k_{k}\right) \longleftarrow \operatorname{GEN}_{G}\left(1^{\prime}\right)$ it $h_{i}=0$ and discard $t_{k_{i}}$
2 . Designate reg (1), reg (2), reg(3), reg(4) ike in protocol (1)
3. Perform unitary U_{0} on $\left.10\right|^{\otimes e} \otimes|k\rangle$ to get

$$
\left.\frac{1}{\sqrt{|x|^{n}}} \sum_{b_{1} p_{2} \cdots b_{n}} \sum_{x_{1} x_{2} \cdots x_{n}} \alpha_{4 b_{2} \cdots b_{n}}| |_{1} b_{2} \ldots b_{n}\right\rangle\left|x_{1} x_{2} \ldots x_{n}\right\rangle
$$

4. Measure reg (3) completely
$g_{k_{1} 1_{1}}\left(x_{1}\right) f_{x_{2} r_{2}}\left(x_{2}\right) g\left(g_{1}\right) f_{R_{1} p_{n}}\left(x_{n}\right)>$ to get y^{n}
5. Apply unitary U to rags (1) \& (2)
6. Measure reg (2) in X basis to get $d_{1} d_{2} \cdots d_{n} \in\{0,1\}^{w}$
7. For $1 \leqslant i \leqslant n$,

$$
\rightarrow I_{f}\left(h_{i}=1\right)
$$

use $t_{R_{i}}$ to get $x_{0 y_{i}}, x_{1 y_{i}}$
Apply $z^{d_{i} \cdot\left(x_{o y_{i}}+x_{1 y_{i}}\right)}$ to the it committed quit in rog(1)

$$
\rightarrow \text { If }(h i=0)
$$

Dost do anything.
\rightarrow Define the resulting state as $\rho_{h i}^{(2)}$
\rightarrow Measwe the resulting reg (1), each quit one byone to get m_{i}. Return $\left(m_{1}, m_{2}, \ldots m_{n}\right)$
$\xrightarrow{\longrightarrow}$ with statistic $D_{\rho_{n}, h}^{(2)}$
$\rightarrow S_{h}^{(2)}$ also depends on the bases h.
\rightarrow Protical (1) differs from Protocol (C) only at step 1, where the keys are sampled from F and G separately.
For $h_{i}=0$, since $t_{k_{i}}$ is unknown, from the computational indistinguishability of $F G$, (INJECTIVE INVARTANCE property)
\rightarrow So for, we have $D_{\beta, h}=D_{S_{h, h}^{(1)}} \sim D_{S_{h, h}, h} \stackrel{?}{=} D_{P_{P, h}}$
to prove
\rightarrow Compare Protiole (D) and Protocol (A). on a care by case basis. The two differ in steps $6,7(f(\theta)$ and step $7(f(\theta))$

Core I: $h_{i}=0$
Analysing Protocol (4), the result of $\operatorname{sep}(7)$ and the measurement by v is
(if the state before step 5 is ρ^{\prime}) after meaning y_{i} $m_{i}=b_{i}$ (which is obtained by $\operatorname{IN} V_{G}\left(t_{k_{i}}, y_{i}\right)$)

The state is

$$
\begin{aligned}
& \sum_{b_{i}: k_{i} \in F} \alpha_{b_{1} p_{2} \cdots b_{N}}\left|b_{1} b_{2} \ldots b_{n}\right\rangle \otimes\left|x_{k_{i} y_{i}}\right\rangle \\
& \quad=\left|b_{j}\right\rangle\left(\sum_{i \neq j} \alpha_{p_{2}} \cdots b_{n}\left|b_{2} \cdots b_{w}\right\rangle \otimes \mid x\right)
\end{aligned}
$$

In Protocol (D), the measurement m_{i} is by measuring in Z basis.

$$
(Z \otimes H) \cup\left(\rho^{\prime}\right)
$$

Since U is trivial, measurement in Z basis shouldn't affect the measurement. (in reg (1))
So m_{i} is also same as measuring β^{\prime} in Z basis directly, which results in outcome b_{i} exactly.
Case II: $h_{i}=1$.
Protocol (1)\&(1) differ at steps 7 and the measuremad basis.
In Protocol (A).
we measure in x basis,
and then apply $X^{d_{1} \cdot\left(x_{k_{i}} O+x_{k_{i}}\right)}$ decoding operator

$$
\begin{aligned}
& \begin{array}{l}
\equiv \text { measuring } \quad X^{d_{i} \cdot\left(x_{k, 0}+x_{k, 1}\right)} H(\rho) \text { in } Z \text { basis } \\
\equiv \\
H Z^{d_{i} \cdot\left(x_{k, 0}+x_{k i l}\right)}(\rho) \text { in } Z \text { basis. }
\end{array} \\
& \equiv \quad Z^{d_{i} \cdot\left(x_{k i, O}+x_{R 1}\right)}(\rho) \text { in } x \text { basis }
\end{aligned}
$$

which is what is happening in Protocol (D).

$$
\Rightarrow D_{s_{h}^{(2)}, h}=D_{\mathbb{P}, h}
$$

\rightarrow Froon other provious results, $D_{s, h}=D_{S_{h, h}^{(1), h}} \sim D_{\rho_{h}(A) h}=D_{P, L}$

$$
\Rightarrow D_{s, h} \sim D_{\mathbb{P}, h}
$$

Proof of Cain II
\rightarrow Gucially we have a prover \mathbb{P} characterised by $\left(U_{0}, S\right)$ who acc to Protocol (A), results in distritation $D_{\mathbb{P}, \boldsymbol{h}}$.
We would like to show that another prover \mathbb{P}^{\prime}, characterised by $\left(U_{0}, S^{\prime}\right)$ where S^{\prime} is trivial, also results in distribution $\mathcal{D}_{\mathbb{P}^{\prime}, h}$ same as $\mathcal{D}_{\mathbb{P}, w}$.
\longrightarrow More formally,
For $S=\left\{B_{\tau}\right\}_{\tau}$ of prover \mathbb{P} characterised by $\left(U_{0}, S\right)$
$\exists S_{j}=\left\{B_{j, x, \tau}^{\prime}\right\}_{x \in\{0,13, \tau}$ of prover \mathbb{P}_{j} char. by $\left(U_{0}, S_{j}\right)$

$$
\begin{aligned}
& \text { s.1. } \quad B_{c}=\sum_{x, 3 \in\{91\}} x^{x} z^{z} \otimes B_{j \times z z} \\
& B_{j, x, \tau}^{\prime}=\sum_{z \in\{0,1\}} z^{z} \otimes B_{j x z \tau} \\
& \text { and } D_{\mathbb{P}, h}=\mathcal{D}_{\mathbb{P}_{j, h}}
\end{aligned}
$$

$\left[B_{\tau}, B_{\nu \tau}^{\prime}\right.$ are rearranged so that $x^{z} z^{z}, Z^{8}$ act on the $j^{\text {th }}$ quibit of reg (2)].
\rightarrow Clearly S_{γ} is trivial w.r.t. $j^{\text {th }}$ quit.
\rightarrow We can do this reduction one-by-one for every quit, and the final CPYP map will he trivial wrt all quits.
\rightarrow We do the proof for $j=1$.
CASE I: $h_{1}=0$
$D_{P_{P, h}}, D_{P_{j, h}}$ are trivially equal because, the attack S happens after measurement of " y " and doesn't affect the measurement output.

CASE II: $h_{j}=1$
\rightarrow The state after step (4) should be

$$
\sum_{b \in\{0,\}}\left|b, x_{b y}\right\rangle \underbrace{\left|\psi_{1}\right\rangle}_{b, y, k}\rangle|y\rangle \quad \text { st. } \quad f_{k b}\left(x_{b y}\right)=y \text {. }
$$

\rightarrow correspond to the $i=23, \ldots n$ registers
if $\mathbb{P}\left(\left(\mathbb{P}_{j}\right)\right.$ has to pas the FEST Round.

$$
\rho_{y_{k}}=\left[\sum_{b_{1} \in\{0,1\}}\left|b_{1}, x_{1, y}\right\rangle\left\langle b_{2}, x_{b_{2}}\right| \otimes\left|\psi_{b_{1}, k}\right\rangle\left\langle\psi_{b_{2}, y k}\right\rangle \otimes \otimes|y\rangle\langle y|\right.
$$

\rightarrow Now, in measurement round, for prover \mathbb{P}, the state is $\operatorname{step}(6)$

$$
\sum_{\tau} B_{\tau} S_{y k} B_{\tau}^{+}
$$

\rightarrow Measuring in X basis, \equiv Applying H gate and measwingin step (7) \geq basis

$$
\sum_{\tau}\left(H^{\otimes l+1} \otimes I\right) B_{\tau} S_{y z} B_{c}^{+}\left(H^{\otimes l+1} \otimes I\right)
$$

\rightarrow Decoding operator xoring with $d_{i} \cdot\left(x_{\text {of }}+x_{1 y}\right)$

$$
\sum_{\tau}\left(X^{d\left(x_{y}+x \cdot y_{2}\right)} \otimes I\right)\left(H^{\otimes l+1} \otimes I\right) B_{c} S_{y k} B_{c}^{+}\left(H^{\otimes l+1} \otimes I\right)\left(X^{d\left(x_{y}+x_{y}\right)} \otimes I\right)
$$

for the measurement results " d " on reg (2)
\rightarrow The distribution state is (applying projection qeactors

$$
\begin{aligned}
& \sigma_{\mathbb{P}, k}=\sum_{b, d, \tau}(|b\rangle\langle b| \otimes|d\rangle\langle d| \otimes I)\left(X^{d \cdot(x \log +x, y)} \otimes I\right)\left(H^{\otimes l+1} \otimes I\right) B_{c} S_{y_{k}} \\
& B_{\tau}^{+}\left(H^{\otimes l+1} \otimes I\right)\left(X^{d \cdot(x y+z y)} \otimes I\right)(\mid b>\langle b| \otimes|d><d| \otimes I) \\
& =\sum_{b d \tau} O_{b, d\left(x x_{g}+x_{(y)}\right), d, \tau} \Theta_{y_{k}} O_{b, d\left(x_{0}+x_{y} y\right), d, \tau}^{+}
\end{aligned}
$$

where

$$
O_{b, c d, \tau}^{\text {where }}:=(|b\rangle\langle b| \otimes|d\rangle\langle d| \otimes I)\left(x^{c} \otimes I\right)\left(H^{\otimes l+1} \otimes I\right) B_{\tau}
$$

\rightarrow Say prover $\hat{\mathbb{P}}_{1}$ is characterised by $\left(U_{0},\left\{(Z \otimes I) S(Z \otimes I)_{\}}\right)\right.$
\rightarrow Similarly the final distributinstate for prover $\hat{\mathbb{P}}_{i}$ is

$$
\left.\begin{array}{rl}
\sigma_{\mathbb{P}_{\Gamma, k}=}=\sum_{b d \tau}(|b\rangle\langle b| \otimes|d\rangle\langle d| \otimes I)\left(x^{d \cdot\left(x_{0 y}+x_{1 y}\right)} \otimes I\right)\left(H^{\otimes l+1} \otimes I\right) \\
& (z \otimes I) B_{\tau}(z \otimes I) \rho(z \otimes I) B_{\tau}^{+}(z \otimes I) \\
& \left(H^{\infty l+1} \otimes I\right)\left(x^{d \cdot\left(x_{c y}+x_{1 y}\right)} \otimes I\right)(|b\rangle\langle b| \otimes|d\rangle\langle d| \otimes I)
\end{array}\right] \begin{aligned}
{[H z=} & x H] \\
= & \sum_{b d \tau}(|b\rangle\langle b| \otimes|d\rangle\langle d| \otimes I)\left(x^{d \cdot\left(x_{a y}+x_{y y}\right) \oplus c} \otimes I\right) B_{c}
\end{aligned}
$$

$(z \otimes I) \rho(z \otimes I)$

$$
\begin{aligned}
& \left.B_{\tau}^{+}\left(H^{\otimes l+1} \otimes I\right)\left(x^{d \cdot\left(x_{0 y}+x_{y y}\right)+c} \otimes I\right)(|b\rangle\langle b| \otimes|d\rangle\langle d| \otimes I)\right) \\
= & \sum_{b d \tau} O_{b, d \cdot\left(x_{g}+x_{y}\right)+1, d, \tau}(z \otimes I) \rho(z \otimes I) O_{b, d \cdot\left(\log +x_{1} y\right)+1, d, \tau}^{+}
\end{aligned}
$$

\rightarrow We know prover \mathbb{P}_{1} is characterized by $\left(U_{0},\left\{B_{x \tau}^{\prime}\right\}_{x \in\{0,1\}, \tau}\right)$
\rightarrow We have a Z-Pauli Twirl measurement result. (proved later) When followed by Hadamand measurement, the CPTP attacks

$$
\left\{\frac{1}{\sqrt{2}}\left(z^{n} \otimes I\right) B_{\tau}\left(z^{n} \otimes I\right)\right\}_{x,\{0,1\}, \tau} \equiv\left\{B_{x, \tau}^{\prime}\right\}_{x \in\{0,1\}, \tau}
$$

\rightarrow So prover \mathbb{P}_{1} is characterised by $\left(V_{0},\left\{\frac{1}{\sqrt{2}}\left(Z^{n} \otimes I\right) B_{\tau}\left(Z^{n} \otimes I\right)\right\}_{\lambda, \tau}\right)$ If lopes like the CPTP of \mathbb{P}_{1} is an average of \mathbb{P} and of \mathbb{P}_{1}.

$$
\begin{aligned}
& =\frac{1}{2}\left(\sigma_{r, \omega}+\sigma_{\hat{p}_{1}, \omega}\right) \\
& \left.\rho_{y k}(z \otimes I) O_{b, d\left(\log x^{\prime}(\underline{y})+1, d i\right.}^{+}\right)
\end{aligned}
$$

\rightarrow It suffices to show now that $\delta_{\mathbb{P}, h}$ is computationally indistinguishable from $\delta_{\hat{\mathbb{P}}_{1}, h}$

$$
\begin{aligned}
& \sigma_{l, k}:=\sum_{b d \tau} O_{b, d\left(g_{g}+z, y\right)+1, \alpha, \tau}(z \otimes I) e_{y k}(z \otimes I) O_{b, d\left(\lg +x x_{j}\right)+1, \alpha, \tau}^{\dagger} \\
& \nabla_{r, R}=\sum_{b d \tau} 0_{b, d \cdot\left(x_{r g}+x_{q}\right)+r, d, \tau}\left(z^{r} \otimes I\right) \rho_{y_{k}}(Z \otimes I) O_{b, d+\left(x_{j}+z_{g}\right)+r, d, \tau}^{+} \\
& \sigma_{r}:=\sum_{k} D_{V, h}(k) \sigma_{r, k} \\
& \rightarrow \rho_{y_{k}}=\sum_{b_{1} b_{2}}\left|b_{1}, x_{b, y}\right\rangle\left\langle k_{2}, x_{b y}\right| \otimes\left|\psi_{\text {byk }}\right\rangle\left\langle\psi_{\text {byk }}\right| \otimes|y\rangle\langle y| \\
& =\sum_{b}|b\rangle\langle b| \otimes\left|x_{\text {by }}\right\rangle\left\langle x_{b y}\right| \otimes\left|\psi_{\text {byk }}\right\rangle\left\langle\psi_{\text {byk }}\right| \otimes|y\rangle\langle y| \\
& +\sum_{b}|b\rangle\langle b \otimes 1| \otimes\left|x_{b y}\right\rangle\left\langle x_{b 01, y \mid}\right| \otimes\left|\psi_{b y k}\right\rangle\left\langle\psi_{b+1 y k}\right| \otimes|y\rangle\langle y| \\
& =S_{y k}^{D}+S_{y k} \\
& \text { termi } \\
& { }_{\substack{j k}}^{D} \\
& \text { corsterms } \\
& \text { Syk } \\
& \rightarrow \sigma_{\text {hk }}=\sum_{b d \tau} O_{b n d \tau}\left(z^{n} \otimes I\right)\left(\zeta_{y k}^{D}+\rho_{y k}^{c}\right)\left(z^{n} \otimes I\right) O_{b h d \tau}^{\dagger} \\
& =\sum_{b d \tau} O_{b a d \tau}\left(S_{y k}^{D}+(-1)^{r} S_{y_{k}}^{c}\right) O_{b r d \tau}^{+} \\
& =\sigma_{r k}^{D}+\sigma_{r k}^{C} \\
& {\left[\begin{array}{l}
z|b\rangle\langle b| z=|b\rangle\langle b| \\
z|b\rangle\langle b+1| z=-|b\rangle\langle b+1|
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
\rightarrow \sigma_{r k}^{D} & =\sum_{b d \tau} O_{r r d \tau} \beta_{y k}^{D} O_{b r d \tau}^{+} \\
\sigma_{r k}^{c} & =\sum_{b d \tau} O_{b r d \tau}(-1)^{r} \rho_{y k}^{c} O_{b a d \tau}^{+}
\end{aligned}
$$

$\rightarrow \sigma_{O R}, \sigma_{I R}$'s first quit denotes the measurement statistics with provers $\mathbb{P}, \widehat{\mathbb{P}}_{1}$ respectively.

$$
\begin{aligned}
& \operatorname{Tr}_{>1}\left[\sigma_{0 k}\right]=\sum_{m} D_{\mathbb{P}_{, h_{1}}}(m)|m\rangle\langle m| \\
& T_{r_{>1}}\left[\sigma_{\mathbb{k}}\right]=\sum_{m} D_{\mathbb{P}_{1}, h_{2}}(m)|m\rangle\langle m|
\end{aligned}
$$

$D_{\mathbb{P}_{1}, h_{1}} \sim D_{\mathbb{P}_{1} h_{2}} \Longleftarrow \sigma_{o k_{k}}, \sigma_{k}$ are computationally indistinguishable
\rightarrow To prove: $\sigma_{0 k}, \sigma_{1 k}$ are computationally indistinguishable
$\Rightarrow(1) \sigma_{O R}^{D}, \sigma_{\mathbb{R}}^{D}$ are computationally indistinguishable
(2) $\gamma_{0 k}^{c}, \sigma_{1 k}^{c}$ are computationally indistinguishable.
\rightarrow (1) $\sigma_{0 k}^{D}, \sigma_{\mathbb{R}}^{D}$ are computationally indistinguishable
Proof: Assume not.
i.e, \exists procedure d that distinguishes then
i.e., \exists a CPTP map S which when passed through a state σ and then measuring (the first quit) is able to findout if $\sigma=\sigma_{o k}^{D}$ or $\sigma_{1 R}^{D}$.

$$
\left|\operatorname{Tr}(|0\rangle\langle 0| \otimes I) S\left(\sigma_{0 k}^{D}-\sigma_{1 k}^{P}\right)\right| \geqslant \lambda(n)
$$

\rightarrow not a negligible $f \times n$.
(Idea: Use At to violate the hardcore bit property of F).

