
CLASSICAL VERIFICATION
T#

OF QUANTUM COMPUTATIONS
→ QPI.PK definition : • Proven IP capable of BQP computations .

• Verifier capable of BPP computations
+

Unitary transformation , Measurements
_

Quantum operations
on
"

K
"

qubits
• It

, exchange potful) classical messages ,"

K
"

qubits of quantum messages .

-7ResultI : QPIPI = BQP

Twoparts
④ QPITE C- BQP→ Trivial proof .

Iii) BQP ≤②PIE →fttohimae ' '15
,

'

16]

- The photo uses [Kitaev ' 03] [Biamonte '08] 's results on
QMA- completeness of the 5-LOCAL HAMILTONIAN and
the 2-LOCAL HAMILTONIAN problems respectively .

- The idea is to convert an instance -c- L of BQP to
hamiltonian Ha (that is 2-local) .

P determines the ground state of Hae and sends to

just the qubit that is to be measured
. (only 2 times

accordingly determines the ground energyof this
hamiltonian .

→Result I : QPII? = BQP (true under certain LWE assumption)
4) QPIP. C- BQP

'

→Trivial proof
Two parts ⇔ Bqp ≤ QPIPO→[Mahadev

'

18]
builds upon the

proof of ResultI .
- The reduction in previous proof involves a singlemeasurement
by which is now outsourced to the QPIPO framework



= RESULT I :[Morimae
'

b-
'

16] =
• (proof of BQPEQPIPI)

→ We make use of previous results
[Kitaev "

03] QMA- completer of 5- LOCAL HAMILTONIAN
[Kempe

'05] QMA - completeness of 2- LOCAL HAMILTONIAN
[Biiamonte

'

08] QMA- completeness of 2-LOCAL ZX HAMILTONIAN

→-Take any LEBQP .

- For an Hp instance NEL ?
- LEBQP ≤QMA ⇒ the BQPEQMA .

- Let the
,
The be the verification circuits of L

,
> L resp .

- Since L
,
- L EBQP

,
the verification certificate state for

both of the
,I will be an all 107 trivial state .

→ Reduce the instances the,VI using reductionR
2-LOCAL ZX HAMILTONIAN instances tbe ,

'

HI respectively.

→ - Both and IP know Hr
,
HI

- Bean construct the eigenstate In> (odI§of Halon HID
from the trivial certificate 157--10>

☒e.

doing
.

reduction JZ}

→ - It uses the,I - to findout if KEL or see-L .

- It conveys the information to and will subsequently
to try to prove his claim .

- If KEL , they use the , Ha , 127
and if Kent , they use The > In , ftp.

⇒- Using 2- LOCAL hamiltonian Ha Cor _Hn) decides
which locations and bases to measure 11>Court>

- It sends all the qubits of 127 torn>) to one-byone
- performs the Some measurements to decide.

r



Inmore detail .

2-LOCAL ZX HAMILTONIAN PROBLEM (language Lat)
Hzx = §hiZi + §0i✗i + §JijZi✗j + £gKijXiZj
with hi Oi

, Jij , Kij c- IR

see ↳a ⇒ 7127 <nIHz×Iz> ≤ a
2 4- ↳µ

⇒ t 127 CR1H>✗ In> ≥ b
b-a ≥Éxñ

→Take LEBQP
.
C-LEBQP)

we want to show LEQPIPI ( : BQPEQPIP,]

For any instance KEL? or see -L?
7- verification ctds the

,
The respectively .

with trivial verification certificates /IT :L,-LEBQP)

→ Take a reduction J2 : QMI A → 2- LOCAL HAMILTONIAN
J2 : be 1- Ha
(107*-1%7)

→ P, know Her

only IP knows 1%7=12407*3 because has only
one qubit .

→ Ha = §hiZit.GL?jXi-&rIjZiXj-&gKijXiZjlfhomdetn
of 2-Local ZX hamiltonian

⇒ Ha = § ds s (where S is Zi , ✗i ,Zi✗jorXiZj)
↳ is real is



HE:= Hat { Ids/I
= § Ids/ (I + signals)5)
= § Zldsl Ps ftp.I-sigzn.ldss-1

An :=z¥jHé = § -11s Ps

[
probability . = %¥dd

Ps is a projection operator on one or two qubits
It involves projection in {1%1,11741}%4+7<+1 or 1-7<-1}
on exactly two qubits .

→ measures in one of those projector for the
required qubits . Come or two
If the product of measurement equals - signCds) ,

Hits Pslz> = ◦ . GñTTsPs IT>)
rufous else

"
×
"

→ This procedure is repeated K times . k=potyGeD .

If more than half of them result in "✓
"

.

accepts KEL
Coe equivalently 2€ L){

my game µ, mamma,µ,
to theProven? [Mahadev '

18]



= RESULT I :[Mahadev
'

18]=
BQPEQPIPO Cuerden certain assumptions

→ KEY IDEA :

Develop a framework where It has a quantum states ,

and is able to measure 9 over a 2-local projection
operator in Z, ✗ bases . (denoted by↳

Importantly , the statistics of the measurement outcomes

for this proves IP
, Dp,n

should be close to the
statistics of an actual measurement OF SOME

STATE g- in the bases
"

hi Ds;w [s=s
'

for honest)
prowess

ftp.w~DS.h

→ For this purpose , we employ a MEASUREMENT PROTOCOL .

ROUGH IDEA : " hi
•

prepares a basis of measurement , according to the Pauli
operator S ,

This basis is only for two qubits . hi=\ ✗ basis

(hi __ 0 for other qubits)
2 basis

• For 4--1 to n) :
- <series of steps>-
It decides to perform MEASUREMENT ROUND or TEST ROUND

←
MEASUREMENT TEST

- steps for to get - a check on malicious behaviour
measurement result . of IP.



KEEFE SOME PREREQUISITES

TRAPDOOR CLAW -FREE FAMILIES : 5- = {f* :X→ Y }
bE{0,13

① ftp.fk, are INJECTIVE and have the SAME RANGE
② INVERTIBLE . using trapdoor & . [For y-fta.CM , IN¥ ftp.b/y)--kf

for BPP machine
(no

,
A) is a claw when froth = ftp.t.GG)

③ CLAW- FREE : Hard to find no , a , EX St
. Glory) is a claw .

for BQP

④ ADAPTIVE -HARDCORE - BIT PROPERTY:
Hard for BQP machine to find b

, sets C- {0,1} ✗I and de {91-3
"

bit. d. Cao+4=0 with non -negligible advantage over≥
.

↳ Coco
, xD is aclaw .

⑤ EFFICIENTLY GENERATED: Efficient (BPP) algorithm GENE
(Kitt)- GENE (1)

⑥ Efficient BQP procedure SAME that for ifp ask,b gives
↳ to> s¥=( the>HEED>

TRAPDOOR INJECTIVE FXN FAMILIES : G = {get :X→I}#{of}
① gkb is INJECTIVE and has DISJOINT range with 8*+01
② INVERTIBLE using a trapdoor tkft-ry-gkt.tk/INVg(tk,ky)--k]

for BPP machine .

③ EFFICIENTLY GENERATED: Efficient (BPP) algorithm GENG
(Kitt)- GENG (1)⑦ Efficient BQP procedure SAME that for ifp ask,b gives

↳ to> ÷§ÉEÉ. 12>19*4>

→ INJECTIVE INVARIANCE :

Given fxn key K, it is computationally hard for BQP) to
determine whether it is from a CLAW- FREE FAMILY or INJECTIVE
FXN FAMILY .



→ Unfortunately we do not know to construct a TRAPDOOR
CLAW - FREE FXN FAMILY .

We'll address this later .

→ For now, ASSUME a TRAPDOOR CLAW FREE FAMILY F
exists which statistics .
4) conditions ① ,20,30,④⑤ ,⑥ in prev . page
( Ii) is injective invariant with a TRAPDOOR INJECTIVE

FXN FAMILY ③ .

→Design a MEASUREMENT PROTOCOL under this assumption .



= MEASUREMENT PROTOCOLI.INITIAL CONDITIONS:
→ decides the basis for measurement he{0,13

"

hi __ 0 → 2 basis ,
hi-_ 1-→✗ basis

→ It has a state 5

PROTOCOL :

For i=I to A
has hi=O or1

IP has I. = £41b> (not necessarily pure .
but for illustrationpurpose)

(1) It samples ki.tk, from G it HE0 for E-Eton

from 5- it hit .
for E- 1- ton(2) It sends Ki to IP

(3) IP constructs the following state using Si

1¥, § £+41b> be> 18*47 if hi-0

*≤£41b> IN /GrabGD7 if HE1

Registers ¥10¥
(4) It measures register③ to get result

"

y
"

(5) IP commits to "

y
"

by sending it to for E- 1 ton
i_commitmentstring

The state in ①
,
② is now
It>Irby> if hi-0 £41b>lay> if hi

--1

(6) decides to perform either a MEASUREMENT ROUND
or TEST ROUND"*•waoouad&⇒in*p••og⇔µ⇒,ÉÉÉ

and are true only when the ith qubit is a pure state.



-

MEASUREMENT ROUND

1) IP measures registers ① ,② in ✗ basis.
to get results bi ,di resp. for Elton.

①2) It sends bi ,di to IV for E- 1- ton

(B) It (hi-0 ) ignores bi , di .
computes bi ,May = INVgtfi.tk;)
stores mi = bi

If this1) computes Roy, My = .IN#-(yi,tki)

stores mi = bi⊕ di . Goy⊕Ky)
→ mi is the measurement result . for E- 1- to n

TEST ROUND

④ IP measures registers ①① in Z basis
to get results t.si , sei resp. /for E-Hon

⑦ IP sends bi , a
' to

⇐3) If Chi-0) computes bing.us = invest (Yi ,tk;)
tests if bi ,aiy== biiei ?

If Christ) computes Roy,Ky = invert(Yi , thi)
tests if Ki

- Roy AND b;⇒o) |¥%n
(ai ⇒ my É↑D bi⇒1) ?

→ aborts the protocol (or rejects the input string)
if the test fails . .



= ILLUSTRATION OF MEASUREMENT PROTOCOL=
.

→ For illustration purpose , we take an honest proverb
and the state Si in its pure form .

Si = £41b>

CASE I : hi =0

After step ③ , 113 has state ¥g§§ 4.11>712719*47
After step (5) .

. 113 has It> 19%7 for someb
wp . 1%12 , 1412 resp .

In MEASUREMENT ROUND :

After step ☒1) , 113's result (bid;) is irrelevant

After step CM3) , mi= 0 or I wp. Kot ,
HF resp .

-
÷ ?⃝ni=o

= {1×012,1412}
= ①
sir:-O {9--4%167}

The measurement probabilities match .

In TEST round
,

After step (1-1)
, 113 gets bi ,ki = bitty .

⑦
,

The test passes



CASE I : hi = 1

After step (3), Po 's state is ↓q§£ 4lb>MIf↳GD
step ④ , Po's state is £4,1b> Kby>

In MEASUREMENT ROUND .

After step ①1) , measuring in ✗ basis
Ñ
measuring §% Hlb>④ H thy> in2basis.

G.% HAD ⊕ It ✗
"" to>

= § ✗
↳ H It> ⑦ 2

"" H 107

= §§% HID ④ 2%71*7
=£×¥ § 4.tDᵈ% It /b)④Id>

= £µ④④I)§H)ᵈ"4bIb7 ④ Id>Er
= §,#④⇒

"

¥ zᵈ""
"④
41 ⊕¥*

= e£HÉY%¥>|⊕%>☒
= §, ✗

d.""+""
H 147 ④2%1*-1



Results in final state

£
, ,t☒ ✗ᵈ"""" €4,4b>] ⊕ Lot Id>

[% ✗¥÷ , 9¥]
= £y § ¥-4m / b⊕ d.Kool-aid> ④ Id>

Measuring registers ① ,② to be bi
'

,
di

bi'={
◦ + d.Hoyt and nip.

Kit = 14-1-12
I +d. they try) Wip. Kit = 19%-12

After step LM37
,

mi = bit d.Kastrup = 0 W.p. Kit = 14-1-12{ 1 w.p. Kit = 19%-12
⇒ In:-| = { 19¥12 , / 9¥12 }

= %hi⇒ { % = £41b>}
The measurement probabilities match

In TEST ROUND
,

After step ⑦ ,
Po gets bit , ki

'
= *
big

In step (1-3)
,

N 's test passes

The test passes .



= GENERAL PROVER BEHAVIOUR=

FOR HONEST PROVER Po
,

→ Say performs % unitary operation on an ancillary
state 107 to get state -5 ,

where he measures reg③
in Z basis

FOR GENERAL PROVER P
,

→ Performs unitary Uc before Ugo
→ Performs unitary 4 before test round (1-1)
→ Performs unitary Um before measurement round (MH

measure
"

y
"

↑
"

→

ÉÉ¥Huµ]→
→ 4, Um act only on tags⑦⑦
So they commute with measuring

"

y
"

in tag③

EQUIVALENT BEHAVIOUR FOR GENERAL PROVER IP

→ Performs 4- 4-↳ Uc on initial state 107

→ If it's a MEASUREMENT ROUND
,
☒ performs U=UµUF

on his state at that time .

→ No unitary operation in test round .

measure if
"

">-f☒☒f¥¥%☐
YEASUREMENT
÷t-⇒→



→ General provost is characterised by CU0N)
☒

It characterised by CPTP maps (8,8)

= UNDERLYING QUANTUM STATES=
How do the states evolve for general proves It ?

→ It begins with four registers .

Reg ① of length
"

n
"

of committed qubits it>

Reg ② of length
"

nw
"

of pheimage registers be>

Reg ③ of length
"

nw
"

of commitment strings Iy>
Reg ④ all auseitlary things .

fxn keys IK7 , ancillary bits , measurement results
kk-k.kz . . . kn MEASUREMENT PROTOCOL

PROTOCOL ⑦ Corresponding
steps

1) Initially It has an all zero state 107% IK7 (1),(2)

(2) It performs ↳ (107%1127) = Ua(Ioe) ⊕ IK7 (3)

[

£7T ¥7bn £hn%k . . .tw/kbz....bn> 1722 . . . an> ⊕

1944th -1%(44%4) . _ . qq.nu> IK7H

↳8k¥ (ni) or *Cri) depending on hi=0oe1

⑤ IP measures Reg③ completely in 2 basis to obtain (4)
F- (y, if≥ , . . . yn) C- yn

(4) '

IP sends yn to µ (5)

(5)TEST ROUND : IP measures Reg①② ⇔ ,#
and sends results to IV.
one by one for 1-≤ i≤n



MEASUREMENT ROUND :
(6) IF applies unitary U to his state regs①&②

(7) IP measures regs①&② in ✗ basis. LM1)
and sends the results bit ,di

'
to

one by one for 1-≤ i.≤ n .

→ gets mi-bitdi.cn#otZki1) oh bi
Return (m,Mz . . . .mn) depending on HE0 0RI

GOAL:To show that the measurement statistics obtained by
for proven IP following PROTOCOL④ = 17pm
is equivalent to the measurement stats of measuring
SOME quantum state 8 in basis hi : Don

Rpn ~ Dsw

Towards this goal we Prove

aÉFor P characterised by No , U)
where U is trivial (U commutes with measurement of

leg① in 2 basis)

3- 5 St . Dpµ ~ Dsn
doÉÉor all IP' characterised by luau)

7 IP characterised by fÑÑ) St . J is trivial .

and Dip:n ~ DP.tn



Hammamat PROOF OF CLAIM I MMMMMMk
→ We construct a series of protocols which all return

the same measurement statistics as 9
,
protocol④

→ Protocol ⑤
I. For 1-≤ i.≤ n

, sample (ki.tk;)- GENE (E)
2. Designate reg①,Meg② , reg③, reg④ like in protocol④
3.

.

Perform unitary Uo on 10ᵗʰ④ IK7 to get

µ¥T ¥7bn £hn%k . . .tw/kbz....bn> 1722 . . . an> ⊕

¥4(a) ftp.bztk) . . . . fpnbntlw>
4. Measure reg③ completely

to get yn
5. Apply unitary U to regs ⑦&②
6- Measure heg② in ✗ basis to get did≥ . . . .dn C- 90,130
7. For I ≤ i.≤ n

,
use tki to get Zoyi , Ziyi

Apply zdi.EE + Kyi) to the ith committed qubit in reg

→Define the resulting state as 5 .

→ Measure the resulting reg① ,
each qubit one byone to get mi

Return ① ,
Ms, . .

. . mm
↳ with statistic Dqn .

→ Observe that the state 9 prepared above is same

irrespective of the bases states h .



→ Protocol ②
I. For 1-≤ i.≤ n

, sample (ki.tk;)- GENE (E)
2. If hi=0 , forget tki
3 . Designate reg① ,Meg② , reg③, reg④ like in protocol④

4.
'

Perform unitary Uo on 10ᵗʰ④ IK7 to get

¥- ¥7bn £hn%k . . .tw/kbz....bn> 1722 . . . an> ⊕

¥4(a) ftp.bztk) . . . . fknbn.tw>
5 Measure reg③ completely
to get yn

6 Apply unitary U to regs ①&②
7 Measure neg② in ✗ basis to get did≥ . . . .dn C- 90,130
8 For I ≤ i.≤ n

,

→If 4=17
use tki to get Zoyi , My i

Apply zdi . Kosi + Kyi) to the ith committed qubit in reg
→ If [hi=D

Don't do anything .

(1)
→Define the resulting state as %
→ Measure the resulting reg① ,

each qubit one byone to get mi
Return ① ,

Ms, . .
. . mm
↳ with statistic D%",w

→ Unlike 5 of protocol ⑤ , sit here depends on the
basis states .

→ Protocol⑤ differs from Protocol ② only at step 8180) ,
step ⑦of B0T when HE0 .

where a Z operator is applied in protocol② .

But it doesn't make any difference in the measurement
result

,
since we measure in 2 basis itself .

⇒ Dean = Detain



→Protocol⑤
I. For 1-≤ i≤n

, (Kitt;)- GEN£11M if hi=1
' Chi,tkp-GENgl.tt) it hi --0 and discard tki .

2 . Designate reg① ,Meg② , reg③, reg④ like in protocol④

3.
'

Perform unitary Uo on 10ᵗʰ④ IK7 to get
A

f¥- ¥7bn .nn%k. . .tw/kbz....bn> 1722 . . . kn> ⊕

18*4(a) ftp.bztk8#;b....fpnbnKw>4. Measure reg③ completely ⇒ ↑
to get yn depends on hi

5. Apply unitary U to regs ⑦&②
6 . Measure heg② in ✗ basis to get did≥ . . . .dn C- 90,130
7. For I ≤ i.≤ n

,

→If 4=1)
use tki to get Zoyi , Kyi

Apply zdi.EE + Kyi) to the ith committed qubit in reg
→ If [hi=D

Don't do anything .

(2)
→Define the resulting state as %
→ Measure the resulting reg① ,

each qubit one byone to get mi
Return ④ ,

Ms, . .
. . mm
↳ with statistic Ds%w

→ SE also depends on the bases h .

→ Protocol ⑤ differs from Protocol② only at step 1 , where the
keys are sampled from 5- and G separately .
For hi=0 , since tk, is unknown, from the computational
indistinguishablety of F.G ,

INJECTIVE INVARIANCE property)

Psi Ds;) ≤ am ⇒ D ~

[onegeigiblefxn SKIN
BE,h



→ so far , we have Dqw = BE in
~ BE.tn?--DP,w

to prove
→ Compare Protocols ④ and Protocol④ .

ON a case by case basis .
The two differ in steps 6,7 (of⑦) and step 7- (of⊕)

caseI : LEO .

Analysing Protocol ④
,
the result of step (7) and the

measurement by is

lit the state before step 5 is s
') after measuring Yi

Mi = bi (which is obtained by INVg( tkiiyi ) )
The state is & t.biz. . .tn/kk..bn>④ ftp.yi>

bi : ki EE
= Ibj> ②✗t.bz. . bnlkbi.tw> ⊕ be. )i≠j

In Protocol⑤
,
the measurement mi is by measuring in

2 basis
,

(2×01-1) U (5)
Since U is trivial

,
measurement in Z basis shouldn't

affect the measurement . (in reg⊕)
so mi is also same as measuring 5

'

in 2 basis

directly, which results in outcome bieseadty .

Case It : hi-_1- .

Protocol ④ &⑦ differ at steps 7 and the measurement basis
.

In Protocol④ ,

we measure in ✗ basis
,

and then apply ✗di
. this + "it) decoding operator

= measuring ✗
&:(""◦

+ ""⇒
It (5) in 2 basis

≤ µ zdithki""kit) (e.) in 2 basis .

= zdithkiot"kid (g) in ✗ basis

which is what is happening in Protocol ⑤ .



⇒ DSE.in = Dpµ ☐m

→ From other previous results , &,w=Dsiiµ~①sEµ= ①Pin
⇒ Deaf①Pin .



Mokhtar PROOF OF CLAIM I MMMMMk
→crucially we have a proves IP characterised by (Uo , s)

who acc to Protocol④ ,
results in distribution Dpw .

We would like to show that another proves P
'

characterised

by No , s
'

) where s
'

is trivial
,
also results in distribution

①
Ip;h

same as ①
1pm

.

→ More formally ,
For 8 = {Be }

,
of proves IP characterised by the,S)

I § = {BIM, }ago,}, of poorer Pj char . by [Uo, :& )

St . Be = §µ, V23④ Bjnzz and ①
µ
=①

"

T.fmBfm, = £f◦,} ④ Bjoest

[Be , B.fm are rearranged so that ✗
"23,23 act on the jth qubit of

reg⊕] .

→ clearly § is trivial writ . jth qubit .

→ we can do this reduction one-by-one for every qubit , and
the final CP4P map will be trivial wrt all qubits .

→ We do the proof for j=1 .

CASE I:L, = 0

7pm , tpg.in are trivially equal because
,
the attacks

happens after measurement of
"

y
"

and

doesn't affect the measurement output .



CASE It : hj= I
→The state after step④ should be

&
.

It ,%y> 14µg,≥ IY7 St. ftp.fkby7-Y .

↳£99B
Torrespond tothe E-2,3. . . . n registers

if PfaPj) has to pass the TEST ROUND .

%k = /¥94,} 1k4g><£7BN ⊕ then>( they ④ 14741

→ Now, in measurement round, for phones IP , the state is step⑥

§ E. Syta BE
→ Measuring in ✗ basis

,
≤ Applying Hgate and measuring in step⑦

2basis

§#
"

④⇒ B
, Sy,BE (H

""
⑦⇒

→ Decoding operator *Ring with d. . 1%4+7g)

§#
that "¥I)(H⊕" '

④⇒ pzsyp.BE Itt
'

④⇒☒""
"④
⑧I)

for the measurement results
"

d
"

on Meg②

→ The distribution state is (applying projection operators

&, = £1b> I ④ Id><dI⊕I)(✗ᵈ """④④I)(H⊕ʰ"④⇒¥5m
BE
"'
④⇒ (✗d-↳*

""
☒I) (Ib>(b)④ IdKdI⊕I)

/

← £l
,
d. Hoyt ;) , d.I

%k 0
+

b. dtkoytkiy.dk



where

Q
>.<a.[

: = ④<H④IdKdl⊕I)(✗
'

④⇒ (+1*+1×0--1) Be
→ say proves it, is characterised by ( vo , {⇐④⇒512×01=1)
→ Similarly the final distributionstate for phones 'P↑ is

ftp.t = §, CIBKH④ Id
>all④⇒ (✗d.KIND④⇒ (4×01+1×01)

⇐④E) Be
'

(2×01) 5 (2×01) BE (2×01)

(Holt'@⇒ (✗
d. that+ "8)

④⇒ ftp.blxoldkd/⑨I)
[ HZ = ✗ It ]

= £4 (lbXb☒IdXd /④I) (✗ᵈ(%FhY)⊕c ⑦⇒ Be

(2×01)8 (2×01)

BE (4×0%-1) (✗day" +<

☒⇒ (16761×06*1-7)
= §E ?⃝d.paying)+;D,

#④⇒ 5 (Z④I] d.Goyag)+1 ,di

→ we know proven P, is characterized by ( Uo , :-c}u→,},)
→ We have a 2-

'

Pauli Twist measurement result . (proved later

When followed by Hadamard measurement
,
the CPTP

attacks

{¥.
(24--1)%(2*-1) }

ego, },

≤ {
.

B:-c }
refute



→ so power IP
,
is characterised by ( Vo , { j-qKHOIB-tdot-B.ie)

It looks like the CPTP of IP, is an average of It and
of III.

→ ftp.h-E#dE&d.teoy+-niy),d,-GkOb,d+.cnoytmy,d + É(£[?⃝dinghy)H,d,I⇔⇒

=-3 ftp.w-TE.w)
%k ⇒↓ag+µ+µ

→ It suffices to show now that 8pm is computationally
indistinguishable from %I;w

-

8. to := § 0
fgdzkditkytmy.dk 87k #d. cnoytniy ,di

Tik : = §⇐E ?⃝d.caging +1 , di
②④⇒ %k ④⇒

laoytnyti .dk

date = & 0
bdt b. d.Gkytmy+r, d, I (2%1)%1<(2×01)-0

+

b)dtbloytkiyftr.dk

oh := G-Drink 4.x
→ 9yk = §≥ /Kirby><kitted ④ that> *

I ④ IP41
Diagonal

= § It><H ⊕ 14,744%1×014%+7<4*1×014741
team

Sy¥
+ § HD41-0II ④ 14g>4%+01 ;D ④ that> +, yk

/ ☒ 18>91
overturns

= SIR + SIK SIK
→ rate = £f Quid, (2%01)&yÉ + 9yd) ( ④⇒ Offend,

= & 0µm ↳
µ,

☐
+ tÑ%k ) ¥dt

12lb>CH2 = Its><H

Z /b)CB1-1IZ = - Its><bt
= rate + hi



→ 8µF = £0bnde SEK ◦Forde
bolt

c

6m£ = & Quote 1-↑ SYK bndtbdt

→ for , Kk 's first qubit denotes the measurement statistics

with promos IP
,
Ñ
, respectively .

I
>i / rote] =ftp.mlmlmxml-rxfk] = £ ?⃝↳ IM 1m7cmI

tfp.in
,

~ tip
,↳
⇐ Fokine are computationally indistinguishable

→ To phone : ok ,4¢ are computationally indistinguishable
⇒ a rope

,# are computationally indistinguishable
② 4£ HE are computationally indistinguishable .

→ 4) ¥ , 4£ are computationally indistinguishable
Prat ! Assume not .

i.e. , 7 procedure A that distinguishes them
i.e.
, 7 a CPTP map S which when passed through

a state 6 and then measuring the first qubit) is able
to findout if F- II orftp./TrCloxoIxOI)s(riI-oiP)I ≥ ✗ In)

↳ not a negligiblefxn.
[Idea : Used to violate the hardcore bit property of F) .


