
Classical Verification of Quantum Computations

Manideep Mamindlapally

August 2022

Abstract

These are notes on a couple of recent works [MF16, Mah18] related to the QPIPk interactive
proof complexity class. We pursue a step-by-step breakdown of the proofs, along with some
illustrations for easy intuition.

1 Introduction

An interactive proof system is a setting between two parties. A computationally inferior verifier
likes to solve a language L, by taking help from a computationally superior prover. The prover
can however be malicious and can’t be trusted. So he will have to compute a solution and also
convince the verifier of the solution through a series of message exchanges. Different such in-
teractive systems have been designed and studied for different levels of computational abilities
with the prover and the verifier. Some of them are IP where the verifier is capable of polynomial
time classical computations and the prover is capable of any classical computation; QIP where
the verifier can do ploynomial time quantum computations and the prover can do any quantum
computation. The sets of languages that can be solved by them are usually represented by the
same letters IP and QIP respectively. It is worth while to study the computational span of these
classes in terms of conventional classes defined in terms of space and time resources. It turns out
IP and QIP are actually both equally as strong as PSPACE. In this report we study the QPIPk

interactive proof system and investigate its power in terms of space and time.

1.1 QPIPk definition

In the QPIP interactive setting, the prover who is capable of performing polynomial time quantum
computations, tries to convince a verifier who is capable of performing polynomial time classical
computations. In addition, the verifier has combined access (with the prover) to a k qubit quantum
system over which he can perform quantum operations - unitary transforms and measurements.
Both of them are allowed to exchange only a polynomial number of classical messages. The set of
problems that can be solved by the verifier is the complexity class QPIPk.

In this work we talk about two key results that aim to capture the computational power of this
QPIP framework. The first of which is

QPIP1 = BQP (1)

The proof of which consists of two parts. The first part QPIP1 ⊆ BQP is trivial. In fact,
QPIPk ⊆ BQP for all integers k, because if there is an a language L where the prover is able

1

to convince the verifier into believing, he should himself be able to solve the language. The sec-
ond part of the proof BQP ⊆ QPIP1 is non trivial. It was proved in [MF16, MNS16]. The proof
uses the QMA−completeness of the k LOCAL HAMILTONIAN problem [KSVV02], by extension
the 2 LOCAL HAMILTONIAN problem [KKR06] and the 2 LOCAL ZX HAMILTONIAN problems
[BL08]. The idea here is to convert an instance x ∈ L of a BQP problem to a 2 LOCAL ZX HAMIL-
TONIAN instance Hx, since BQP ⊆ QMA. The prover (BQP capable) determines the ground
state of Hx. Due to the 2-local nature of the hamiltonian, the verifier only needs to measure qubits
locally in Z or X bases. He can do this by fetching each qubit from the prover, one at a time. We
will discuss this in more detail in Section ??.

We build upon this result in the Section ?? by showing that

QPIP0 = BQP (2)

under the assumption of the existence of certain trapdoor claw free function families. Here too, the
first part QPIP0 ⊆ BQP is trivial as already seen above. For the second part, BQP ⊆ QPIP0,
[Mah18] emulate a similar form of reduction as in [MF16] but outsource the quantum measure-
ment step completely from the verifier to the prover. They develop a framework that exploits the
properties of trapdoor claw free function families and their injective invariance, to build a MEASURE-
MENT PROTOCOL that ensures that the prover correctly performs quantum measurement in the
basis states desired by the verifier. Unfortunately, though, no one has been able to construct a
trapdoor claw free function family so far. They present a weaker family, the extended trapdoor claw free
function family that can be and has been realised, but some of their properties rely on the assump-
tion that a BQP machine cannot solve the learning with errors (LWE) problem. We break down the
proofs completely and supplement them with an illustration for an easy intuition in Section ??.

2 Result: BQP ⊆ QPIP1 [MF16, MNS16]

Towards proving this result, we use a QMA-complete problem, the k LOCAL HAMILTONIAN

PROBLEM. A k local Hamiltonian is an operator that can be expressed as a sum of non-negative
Hermitian operators, that all act on atmost k qubits. A 2 local ZX Hamiltonian is one where the
constituent Hermitians are only made of Pauli operators Z or X and act on atmost two of the
qubits. The 2 LOCAL ZX HAMILTONIAN PROBLEM is a membership problem of a language of
these 2 local ZX Hamiltonians with low ground energy.

Definition 1 (2 LOCAL ZX HAMILTONIAN PROBLEM [BL08]) It is the membership problem in lan-
guage L of a hamiltonian HZX of the form

HZX =
∑
i

hiZi +
∑
i

δiXi +
∑
i<j

JijZiXj +
∑
i<j

KijXiZj (3)

with hi, δi, Jij, Kij ∈ R

HZX ∈ L ⇐⇒ H has an eigenvalue not exceeding a (4)
HZX /∈ L ⇐⇒ H has no eigenvalue exceeding b (5)

where 0 ≤ a < b and b− a = Ω(n−α) and α > 0 is a constant.

2

[KSVV02] showed that the 5 LOCAL HAMILTONIAN PROBLEM is QMA-complete. In a later
iteration [KKR06] showed QMA-completeness of the 2 LOCAL HAMILTONIAN PROBLEM. The re-
sult was further extended in [BL08] to QMA-completeness of the 2 LOCAL ZX HAMILTONIAN

PROBLEM. We employ the reduction R from [BL08], that converts a QMA instance x, and its cer-
tificate |ξx⟩ to hamiltonian Hx and its eigenstate (with the smallest eigen value) |ηx⟩.

Remember that our goal was to prove BQP ⊆ QPIP1. We take a language L contained in
BQP, and try to show that L ∈ QPIP1. Towards that we use the fact that L is also in QMA
(since BQP ⊆ QMA), with a trivial verification certificate |ξ⟩ = |0⟩ for any input instance x, and
the corresponding verification circuit Vx. We can use R to reduce Vx, |ξ⟩ = |0⟩ in polynomial time
to the 2 LOCAL ZX HAMILTONIAN instance Hx, with the eigenstate |η0⟩. In the QPIP interactive
proof setting, the BQP capable prover is thus able to establish Hx as well as |η0⟩, while the verifier
only computes Hx because he can do only classical computation. Additionally, the prover is al-
ready able to determine whether or not x ∈ L by passing |0⟩ through the circuit Vx and measuring
the output.

Now, see that the Hamiltonian Hx, from definition 1 comprises of a number of hermitians, that
are all Pauli operators Z,X acting on atmost two qubits. If we represent Hx as sum of such Pauli
terms S with coefficients ds,

Hx =
∑

S is of the form in definition 1

dSS (6)

Here dS ∈ R since all the coefficients in definition 1 are real. Let us define

H ′
x : = Hx + |dS |I (7)

=
∑
S

|dS |(I + sign(dS)S) (8)

=
∑
S

2|dS |PS (9)

where PS is a projection operator PS := I+sign(dS)S
2 . Now defining another operator which is a

normalised version of H ′
x

H ′′
x : =

1

2
∑

S |dS |
H ′

x (10)

=
∑
S

πSPS (11)

where πS = |dS |∑
S |dS | is a probability term.

PROTOCOL P1 (for input instance “x ∈ L?”)

1. The prover and verifier both determine (can do in classical polynomial time) the description of
the quantum circuit Vx of BQP language L.

2. The verifier usesR to convert circuit description Vx to a 2 local ZX Hamiltonian Hx.
The prover uses R to convert Vx to Hx and also convert the trivial certificate state |0⟩ to eigen-
state |η0⟩.

3

|η0⟩ has eigenvalue greater than b or less than a depending on if x /∈ L or x ∈ L respectively. Thus, the
verifier is to evaluate ⟨η0|Hx|η0⟩. This can be equivalently expressed in terms of the acceptance proba-
bility of projection operator H ′′

x . See eq. (16)

3. The verifier chooses a Pauli operator S with probability πS from the 2-local expansion of Hx.

4. The prover sends over each of the n qubits of |η0⟩ one by one.

5. For each ith qubit of |η0⟩ received, if the Pauli S contains Z or X on that location i, the verifier
measures the ith qubit in the corresonding Z or X basis eigen states.

6. There are atmost two such locations i. If the product of the results equals−sign(dS), the verifier
returns ACCEPT. Else REJECT.

According to this procedure P1, the probability of acceptance pacc is

pacc = 1− ⟨η0|H ′′
x |η0⟩ (12)

= 1− 1

2
∑

S |dS |
⟨η0|H ′

x|η0⟩ (13)

= 1− 1

2
∑

S |dS |
⟨η0|(Hx +

∑
S

|dS |I)|η0⟩ (14)

= 1− 1

2
∑

S |dS |
(⟨η0|Hx|η0⟩+

∑
S

|dS |) (15)

=
1

2
− ⟨η0|Hx|η0⟩

2
∑

S |dS |
(16)

if x ∈ L, from definition 1

pacc ≥
1

2
− a

2
∑

S |dS |
(17)

if x /∈ L

pacc ≤
1

2
− b

2
∑

S |dS |
(18)

Where b− a ≥ 1
poly(|x|) . So, by repeating the procedure above polynomial number of times, x ∈ L

and x /∈ L can be separated.

PROTOCOL P2 (for input instance “x ∈ L?”)

1. The prover and verifier both determine (can do in classical polynomial time) the description of
the quantum circuit Vx of BQP language L.

2. Perform steps 2-6 of PROTOCOL P1 p (p = poly(|x|)) times and count the number of ACCEPTs
na.

3. If na ≥ (12 −
a+b

4
∑

S |dS |)p, the verificer ACCEPTs. Else REJECTs.

4

Protocol P2 amplifies the success probability of P1 to an error exponentially small in |x|. Observe
that throughout P and P2, the verifier has only one qubit available to him at a time, over which
he performs measurements only in Z or X basis. The outcome is that we were able to solve a
BQP language L entirely using a QPIP1 framework P2. Thus proving BQP ⊆ QPIP1.

3 Result II [Mah18]

See that in protocol P1 in the previous section, the verifier makes use of exactly one qubit register
over which he performs measurements in basis eigen states of Z or X . Consequently we were
able to show that any BQP language L is in QPIP1. In this part of the report we will see if L is in
QPIP0. For that we need a framework to outsource the poscession and measurement of the single
qubit register at the verifier to the prover who is already BQP capable. Unfortunately though, at
this point of time we don’t have any such proof. However, we will look at [Mah18]’s version of
MEASUREMENT PROTOCOL that offers a mechanism to reliably outsource the measurement of a
state in a desired basis. It makes use of trapdoor claw free function families. Unfortunately though,
we do not know any constructions of this family. In [Mah18], they use an approximate version,
the extended trapdoor claw free function family, that can be efficiently constructed and used but rely
on an assumption that the “Learning with errors” problem cannot be solved by a BQP machine.
This is a commonly used assumption several other cryptographic protocols too.

The key idea with the MEASUREMENT PROTOCOL is to ensure that for any behaviour of the
Prover P, there is a valid quantum state ρ, whose measurement statistics Dρ,h over the bases de-
sired by the verifier h, match the actual statistics obtained DP,h

Dρ,h = DP,h (19)

Let’s start by revising the definitions of some preliminaries of [Mah18].

3.1 Preliminaries

3.1.1 Trapdoor Claw Free Families

From the definition in [Mah18], trapdoor claw free families are those of the form

F = {fk,b : X → Y}k,b (20)

and

• Each of fk,0 and fk,1 are injective and their images are equal i.e., the functions are two-to-
one.

• There is a classical polynomial time generation procedure GENF , generates a key k and a
trapdoor tk.

(k, tk)← GENF (21)

• There is a quantum polynomial time peperation procedure SAMPF that produces fk,b(x)
for given inputs k, b and x.

|b⟩|x⟩|0⟩|k⟩ SAMPF−→ |b⟩|x⟩|fk,b(x)⟩|k⟩ (22)

A claw (x0, x1) is defined as one if there exists an output y for which fk,0(x0) = fk,1(x1).

5

• Given an output y and function key k, it is claw-free i.e., it is computationally hard to find
the claw (x0, x1) in quantum polynomial time.

• Only using the trapdoor tk, can one invert. There exists an inverting function INVF which
using the trapdoor tk , output y, inverts back to the input claw (x0, x1).

INVF (tk, y) = (x0, x1) (23)

• F satisfies the hard core bit property. It is computationally hard for a quantum computer
to find a claw (x0, x1) and d ∈ {0, 1}w in polynomial time such that d · (x0 ⊕ x1) = 0 with
non-negligible advantage over 1

2 .

3.1.2 Trapdoor Injective Function Families

From the definitions in [Mah18], trapdoor injective function families are those of the form

G = {gk,b : X → Y}k,b (24)

and

• Each gk, b is injective, gk,0 and gk,1 have disjoint ranges i.e., they are one-to-one.

• There is a classical polynomial time generation procedure GENG , generates a key k and a
trapdoor tk.

(k, tk)← GENG (25)

• There is a quantum polynomial time peperation procedure SAMPG that produces gk,b(x)
for given inputs k, b and x.

|b⟩|x⟩|0⟩|k⟩ SAMPG−→ |b⟩|x⟩|gk,b(x)⟩|k⟩ (26)

• Given an output y and function key k, it is computationally hard to find the preimages b, xb
in quantum polynomial time.

• Only using the trapdoor tk, can one invert. There exists an inverting function INVG which
using the trapdoor tk , output y, inverts back to the preimage xb and bit b.

INVG(tk, y) = (b, xb) (27)

3.1.3 Injective Invariance

A trapdoor claw free family F is said to be injective invariant with a trapdoor injective family G
if for a given function key k, it is computationally hard for a BQP machine to determine if k was
sampled from which of the families, unless you know the trapdoor tk.

6

3.2 Some Relaxed assumptions

As pointed out earlier, we unfortunately do not know of any constructions of the trapdoor injective
functions that satisfy the requirements posed here. In [Mah18], they use these primitives to build
a MEASUREMENT PROTOCOL (c.f. Sec ??). They also go on to use a relaxed version, the extended
claw free function families and extended trapdoor injective function families that can be constructed
on a more pragmatic assumption that the LEARNING WITH ERRORS problem is difficult to solve
for a quantum computer in polynomial time. The latter assumption is more reasonable, widely
believed to be true and is also used in several other security protocols as well. For the initial part
of the report, for mathematical simplicity purposes, we will stick to the former assumption about
the existence of such functions. This allows for an easier intuitive understanding. More precisely
our assumptions are

1. There exists a trapdoor claw free function family F satisfying the definitions of sec ??

2. There exists a trapdoor injective function family G such that F and G are injective invariant.

3.3 The Measurement Protocol

In this section we look at the MEASUREMENT PROTOCOL used in [Mah18] and perform an illus-
tration for a single qubit measurement. Remember that we are trying to emulate step 5 of protocol
P1. The verifier picks a Pauli S and has the corresponding bases of measurement decided for each
of the qubit. It is only at most two qubits, that the verifier would want to measure. For simplicity,
we let the verifier measure in the standard Z bases over the qubits not mentioned. The prover
meanwhile doesn’t know which Pauli the verifier picked, but knows the Hamiltonian Hx and the
eigenstate |η0⟩.

MEASUREMENT PROTOCOL M

Initially,

1. The verifier V decided the bases of measurement h ∈ {0, 1}n. hi = 1 if X bases are needed for
measurement and hi = 0 otherwise.

2. The prover P has the state ρ which is a combination of three key registers. The first is an n qubit
committed bit register, initiated to |η0⟩⟨η0|. The second register is what we call a preimage register
initialised to a fully superposed state of all xs. The third is the the commitment string register
used to later store the function outputs ys, also initialised to to all |0⟩ state. Each register has
provision for ancillary qubits too. Let’s say there is a fourth register to later store the function
key k as well, also initialised to zero.

ρ← 1

|X n|
∑

xn∈Xn

|η0⟩|xn⟩|0e⟩|0e⟩ (28)

The protocol itself proceeds in the following steps

(1) For i = 1 to n, V generates function keys ki and trapdoor tki from G of F depending on the
desired bases of measurement hi.

(ki, tki)←

{
GENG if hi = 0

GENF if hi = 1
(29)

7

(2) V sends to P the key vector k of all keys ki.

(3) P sets the fourth register to key vector k and passes ρ through the SAMP state preparation
procedure.

(4) P measures the the third register a.k.a. commitment string register in the Z bases to get commit-
ment string yi for each i = 1 to n.

(5) P sends over each yi to V

(6) V computes the inversions of all yi using the trapdoors tki .
If hi = 0, V computes (bi, xbi) = INVG(yi, tki
If hi = 1, P computes (x0,yi , x1,yi) = INVF (yi, tki)

(7) V decides to perform either a TEST ROUND or a MEASUREMENT ROUND with half probability
each.

If it’s the test round,
TEST ROUND

(T1) P measures the first and second registers in the standard Z bases to get outputs b′i, x
′
i for each

i.

(T2) P sends each b′i, x
′
i to V

(T3) For each i,
If hi = 0 V tests if (bi, xbi) == (b′i, x

′
bi
)?

If hi = 1 V tests if (0, x0,yi) == (b′i, x
′
bi
) (or) (1, x1,yi) == (b′i, x

′
bi
)?.

V aborts the protocol if either of the test fails.

MEASUREMENT ROUND

(M1) P measures the first and second registers in the hadamard X bases to get outputs b
′
i, d′i for

each i.

(M2) P sends each b
′
i, x′i to V

(M3) For each i,
If hi = 0, V ignores b′i, x′i and calculates mi ← bi
If hi = 1, V calculates mi ← b′i ⊕ d′i · (x0,yi ⊕ x1,yi).
and returns the cumulative result of all mi as the measurement result.

3.3.1 Illustration

For this illustration purpose let us start with a single qubit state |η0⟩ = α0|0⟩ + α1|1⟩. Also let us
assume that the prover behaves honest to the protocol. We will drop the subscript i in the vari-
ables hi, yi, bi we use (in this subsection), since there is only a single qubit.

At the start of M , V chooses the basis state for measurement. Let us split the analysis for h = 0
and h = 1 seperately.
Case I: h = 0
Initially, P starts with ρ

ρ← 1√
|X |

∑
x∈X

∑
b∈{0,1}

αb|b⟩|x⟩|0e⟩|0e⟩ (30)

8

In step (1), V samples (k, tk) from GENG , of which k is sent to P in step (2). After step (3), the state
at P is

ρ← SAMP

 1√
|X |

∑
x∈X

∑
b∈{0,1}

αb|b⟩|x⟩|0e⟩|k⟩

 (31)

=
1√
|X |

∑
x∈X

∑
b∈{0,1}

αb|b⟩|x⟩|gk,b(x)⟩|k⟩ (32)

In step (4), P measures the third register in Z bases to get output y. At this stage, ρ collapses to

ρ←

{
|0⟩|x0,y⟩ (y = gk,0(x0,y) for some x0,y ∈ X) w.p.|α0|2

|1⟩|x1,y⟩ (y = gk,1(x1,y) for some x1,y ∈ X) w.p.|α1|2
(33)

1 Here xb,y is such that gk,b(xb,y) = y. This is because from the one-to-one property of G, every y
has only one preimage (b, xb,y). y could have been measured from gk,b(·) of either of b with |αb|2
probability because of the superposition in previous step.
The measured y is sent over to the V in step (5), who in step (6) performs the inversion operation
INVG(y, tk) to get the function inputs (b, xb,y). Either of b = 0 or 1 could have been the result with
probabilities |α0|2 and |α1|2 respectively. Nonetheless, these values match the state |b⟩|xb,y⟩ (in ρ)
that P has.

If it is the TEST ROUND, in step (T1) P measures the first and second registers of ρ in Z bases (in
(33)) to get b′ = b and x′ = xb,y always. On sending these values to the V in step (T2), he performs
a test in step (T3) which passes because of the above reason.

If it is the MEASUREMENT ROUND, in step (M1), P measures the first and second registers of
ρ in X bases(in (33)). These results should not matter, as V directly calculates the measurement
result m = b obtained in step (6). As already seen, each of the b is output with |αb|2 probability
each. ThereforeDP,h=0 = {|α0|2, |α1|2}. This equals the statistics of measurement if ρ were directly
measured in the Z basis, Dρ,h=0 = {|α0|2, |α1|2}. Therefore DP,h=0 = Dρ,h=0.
Case II: h = 1
Initially, P starts with ρ

ρ← 1√
|X |

∑
x∈X

∑
b∈{0,1}

αb|b⟩|x⟩|0e⟩|0e⟩ (34)

In step (1), V samples (k, tk) from GENF , of which k is sent to P in step (2). After step (3), the state
at P is

ρ← SAMP

 1√
|X |

∑
x∈X

∑
b∈{0,1}

αb|b⟩|x⟩|0e⟩|k⟩

 (35)

=
1√
|X |

∑
x∈X

∑
b∈{0,1}

αb|b⟩|x⟩|fk,b(x)⟩|k⟩ (36)

In step (4), P measures the third register in Z bases to get output y. At this stage, ρ collapses to

ρ←
∑

b∈{0,1}

αb|b⟩|xb,y⟩ (37)

1For simplicity we dropped the third and fourth registers that have already collapsed to |y⟩ and |k⟩ respectively.

9

2 Here x0,y and x1,y is a claw such that fk,0(x0,y) = fk,1(x1,y) = y. This is because from the two-to-
one property of F , every y has two preimages that form a claw.
The measured y is sent over to the V in step (5), who in step (6) performs the inversion operation
INVF (y, tk) to get the input claw (x0,y, x1,y).

If it is the TEST ROUND, in step (T1) P measures the first and second registers of ρ in Z bases
(in (37)) to get either (b′ = 0, x′ = x0,y) or (b′ = 1, x′ = x1,y) with probabilities |α0|2 and |α1|2
respectively (because of the superposition in (37)). On sending these values to V in step (T2), he
performs a test in step (T3) which passes because of the above reason.

If it is the MEASUREMENT ROUND, in step (M1), P measures the first and second registers of
ρ in X bases(in (33)). This is equivalent to first performing a hadamard gate operation and then
measuring in the Z bases. Performing the Hadamard operation to ρ in (37) results in

H ⊗H

 ∑
b∈{0,1}

αb|b⟩|xb,y⟩

 (38)

= (H ⊗ I)(I ⊗H)

 ∑
b∈{0,1}

αb|b⟩ ⊗Xxb,y |0⟩

 (39)

= (H ⊗ I)

 ∑
b∈{0,1}

αb|b⟩ ⊗HXxb,y |0⟩

 (40)

= (H ⊗ I)

 ∑
b∈{0,1}

αb|b⟩ ⊗ Zxb,yH|0⟩

 (41)

= (H ⊗ I)

 ∑
b∈{0,1}

αb|b⟩ ⊗ Zxb,y

(∑
d∈X

1√
|X |
|d⟩

) (42)

=
1√
|X |

(H ⊗ I)

∑
d∈X

∑
b∈{0,1}

αb|b⟩ ⊗ Zxb,y |d⟩

 (43)

=
1√
|X |

(H ⊗ I)

∑
d∈X

∑
b∈{0,1}

αb|b⟩ ⊗ (−1)d·xb,y |d⟩

 (44)

=
1√
|X |

(H ⊗ I)

∑
d∈X

∑
b∈{0,1}

(−1)d·xb,yαb|b⟩|d⟩

 (45)

=
1√
|X |

(H ⊗ I)

(∑
d∈X

(−1)d·x0,yα0|0⟩|d⟩+ (−1)d·x1,yα1|1⟩|d⟩

)
(46)

=
1√
|X |

(H ⊗ I)

(∑
d∈X

(
α0|0⟩+ (−1)d·(x0,y⊕x1,y)α1|1⟩

)
⊗ (−1)d·x0,y |d⟩

)
(47)

2For simplicity we dropped the third and fourth registers that have already collapsed to |y⟩ and |k⟩ respectively.

10

=
1√
|X |

(H ⊗ I)

(∑
d∈X

Zd·(x0,y⊕x1,y) (α0|0⟩+ α1|1⟩)⊗ Zd·x0,y |d⟩

)
(48)

=
1√
|X |

(H ⊗ I)

∑
d∈X

Zd·(x0,y⊕x1,y)
∑

b∈{0,1}

αb|b⟩

⊗ (Zd·x0,y |d⟩
) (49)

=
1√
|X |

∑
d∈X

HZd·(x0,y⊕x1,y)
∑

b∈{0,1}

αb|b⟩

⊗ (Zd·x0,y |d⟩
)

(50)

=
1√
|X |

∑
d∈X

(
Xd·(x0,y⊕x1,y)H (α0|0⟩+ α1|1⟩)

)
⊗
(
Zd·x0,y |d⟩

)
(51)

=
1√
|X |

∑
d∈X

(
Xd·(x0,y⊕x1,y)

(
α0 + α1√

2
α0|0⟩+

α0 − α1√
2

α1|1⟩
))
⊗
(
Zd·x0,y |d⟩

)
(52)

=
1√
|X |

∑
d∈X

Xd·(x0,y⊕x1,y)

(∑
b

αb|b⟩

)
⊗ Zd·x0,y |d⟩ (53)

=
1√
|X |

∑
d∈X

(∑
b

αbX
d·(x0,y⊕x1,y)|b⟩

)
⊗ Zd·x0,y |d⟩ (54)

=
1√
|X |

∑
d∈X

(∑
b

αb|b⊕ d · (x0,y ⊕ x1,y)⟩

)
⊗ Zd·x0,y |d⟩ (55)

where αb := α0+(−1)bα1√
2

. Now measuring the first and second registers in standard basis gives
some d′ with probability 1

|X | . The state in the first register collapses to∑
b

αb|b⊕ d′ · (x0,y ⊕ x1,y)⟩ (56)

Measuring the first qubit in Z basis gives result b′ = b ⊕ d′ · (x0,y ⊕ x1,y) with probability |αb|2 =
|α0+(−1)bα1|2

2 . In Step (M2), b′ and d′ are sent to V who then cancels the additional d′ · (x0,y ⊕ x1,y)

term in b′ by XORing with it, thus getting results m = 0 or 1 with probabilities |α0+α1|2
2 and |α0−α1|2

2
respectively.

Therefore DP,h=1 = { |α0+α1|2
2 , |α0−α1|2

2 }. This equals the statistics of measurement if ρ were

directly measured in the X basis, Dρ,h=0 = { |α0+α1|2
2 , |α0−α1|2

2 }. Therefore DP,h=1 = Dρ,h=1. The
result of Cases I and II is that DP,h = Dρ,h.

3.4 General Prover behaviour

In the previous section we have seen an illustration of how the protocol works for a single qubit
measurement when the prover behaves honestly i.e., sticks to the protocol. This does provide a
good intuition and an easy first step towards understanding the proofs the follow now on. That
said, a protocol that works for an honest prover is not of any non trivial value. The entire QPIP
interactive setup is based on the verifier not being trustful of the prover. If he was, then he could
have relayed any BQP language instance to the prover directly and fetched for the answer. In
this and the later sections, we will see how THE MEASUREMENT PROTOCOL M guarantees good
soundness and completeness ratios even for a prover that deviates from the prescribed steps. First,

11

in this section we will analyse the ways in which a prover can cheat and grasp a mathematically
sound deviated version of M that applies to even a cheating Prover.

Honest Prover: In M , the prover initiates the state ρ to (28), and then using the keys k prepares
a state using SAMP procedure. Let us represent this operation equivalently as a unitary UC,0. An
honest prover P0 would simply apply the operation UC,0 on an initial state |0n⟩|0nw⟩|0e⟩|k⟩ and
then follow steps (4)-(5) and the Test and Measurement rounds as specified by M .

Cheating Prover: Let us look at different attacks or deviations a cheating Prover P′ can induce
over M .

1. P′ can perform a unitary UC over the initial state |0n⟩|0nw⟩|0e⟩|k⟩ prior to applying UC,0. This
unitary matrix provision encompasses all cheating strategies of P′ (like different state initialisa-
tion and modifying the key k) upto step (3) i.e., applying SAMP procedure.

2. Applying a unitary UC,0 different from what is used by P0. This covers for P′’s behaviour when
he uses a wrong SAMP procedure.
At this point, P′ measures the third register to get y (step (4)), although he may or may not communicate
the exact y over to the V .

3. Applying a unitary UT at the start of step (T1) of TEST ROUND.
Here too, P′ can send b′i, x

′
i of his choosing to V in step (T2). This is captured well by a unitary UT that

maps any input state to exactly the desired |b′i⟩|x′i⟩. This requires some additional auxiliary qubits.

4. In case of a Measurement round, applying a unitary UM at the start of step (M1).
Here too, P′ can send b

′
i, d

′
i of his choosing to V in step (M2). This is captured well by a unitary UM that

maps any input state to exactly the desired |b′i⟩|d′i⟩. This requires some additional auxiliary qubits.

Observe that UT and UM only need to act on the first two registers. If P′ wants UT (or UM) to be
a function of the measured outcome y, this is equivalent to UT (or UM) acting on an auxiliary state
where the contents of the third register have been copied at the start of the protocol. This con-
struction of UT and UM allows them to commute with step (4) i.e., the measurement of the third
register to get y. We will use the fact that UT commutes with measurement of y and interchange
the order. This results in a cumulative operation of U0 := UTUC,0U0 prior to step (4). To keep it
equivalent, we replace the attack UM in the measurement round by U := U †

TUM . Any prover P′’s
behaviour is therefore characterised by unitaries (U0, U). The generalised version of protocol M
for general prover behaviours is explored in protocol M1.

PROTOCOL M1

(1) For i = 1 to n, V generates function keys ki and trapdoor tki from G of F depending on the
desired bases of measurement hi.

(ki, tki)←

{
GENG if hi = 0

GENF if hi = 1
(57)

(2) V sends all keys k to P′, who now prepares an initial state

|0n⟩|0nw⟩|0e⟩|k⟩

12

(3) P′ perform unitary operation U0 which can be simplified as

U0(|0n⟩|0nw⟩|0e⟩|k⟩) = U0,k(|0n⟩|0nw⟩|0e⟩)⊗ |k⟩ (58)

where U0,k is a unitary that is specific to the key k.

(4) P′ measures the third register in Z basis to obtain y.

(5) P′ sends y to V. V computes the inversions of all yi using the trapdoors tki .
If hi = 0, V computes (bi, xbi) = INVG(yi, tki
If hi = 1, P′ computes (x0,yi , x1,yi) = INVF (yi, tki)

(6) V chooses to perform either TEST ROUND or MEASUREMENT ROUND with half probability
each.

If it is the test round,

(T1) P′ measures the first and second registers in the standard Z bases to get outputs b′i, x
′
i for

each i. P sends each b′i, x
′
i to V

(T2) For each i,
If hi = 0 V tests if (bi, xbi) == (b′i, x

′
bi
)?

If hi = 1 V tests if (0, x0,yi) == (b′i, x
′
bi
) (or) (1, x1,yi) == (b′i, x

′
bi
)?.

V aborts the protocol if either of the test fails.

If it is the measurment round,

(M1) P′ applies unitary U on the first and second registers.

(M2) P′ measures the first two registers in X basis for each i = 1 to n, to get b′i, d′i. P′ sends b
′
i, d

′
i

to V for each i.

(M3) For each i,
If hi = 0, V calculates mi = bi (Irrespective of b′i, d′i)
If hi = 0, V calculates mi = b′i ⊕ d′i · (x0,yi + x1,yi)
V returns m which is a vector of all mi.

In case of a test round, step (6) is immediately followed by (T1) and (T2). If the test is to pass,
P′’s state at the end of step (4) in the first two registers has to be

nα

⊗
i:hi=0

|bi⟩|xbi,yi⟩

⊗
⊗

i:hi=1

 ∑
bi∈{0,1}

αi,bi |bi⟩|xbi,yi⟩

 (59)

where αi,bi could be any complex coefficients and nα is the corresponding normalising coefficient.
Additionally, y that P′ sends to V has to be same as the one measured y, which is same as the y
corresponding to preimages xbi,yi in (59). Otherwise, test (T2) fails because, every yi has exactly
one (or two) preimages in the function gk (or fk respectively). The entire purpose of the test round
is to ensure that the prover’s state at the start of measurement round is (59). From now on, we will
only concern ourselves with the measurement round and evaluate the statatics of the resulting
measurement m, DP′,h. Crucially, we would like to show that this statistic is same as the statistic
obatained while measuring some quantum state ρ in h basis Dρ,h.

13

3.4.1 To Prove

We achieve our goal of showing that DP′,h ≈ Dρ,h for some ρ via a two part process. Remember
that every prover is characterised by just the unitary operators (U0, U) according to M . In the first
part, we show the result for provers P′ characterised by a (U0, U) for certain X-trivial operators U .

We say that a unitary operation U is X-trivial when U commutes with a measurement opera-
tion in Z basis of the first register i.e., the committed qubit register. In other words, interchanging
the order of operations of U and the Z-basis measurement (of the first register) results in the same
quantum state. We will use this fact to prove the following

Claim 2 For any prover P characterised by (U0, U) where U is X-trivial, there exists a quantum state ρ
with matching measurement statistics in any given basis h.

DP,h ≈ Dρ,h (60)

Towards arriving at the result, we make use of another claim which will be proved in section
??

Claim 3 For any prover P′ characterised by (U0, U), there exists another prover P characterised by (U0, U)
where U is X-trivial with matching measurement statistics in any given basis h.

DP,h ≈ DP′,h (61)

3.5 Proofs

3.5.1 Proof of Claim 2

Towards this proof, we take the measurement protocol M1 corresponding to a prover P charac-
terised by (U0, U) where U is X-trivial. We design a quantum state ρ whose measurement statistics
we show match those obtained in M1. The X-trivial property of U will be crucial in the techniques
employed. First, let us recall the protocol M1 for prover P. Since we have established that the en-
tire purpose of the TEST ROUND is to collapse P’s state to (59), we will only pursue the MEASURE-
MENT ROUND here. Moreover, in this section of the proof, we are interested only in the output
statistics of the MEASUREMENT ROUND.

PROTOCOL M1 (Reduced version from P’s perspective)

(1) For i = 1 to n, P receives key ki that is generated from GENG if hi = 0, or from GENF if
hi = 1. (P does not know hi though)

(2) P performs U0 on initial state |0n⟩|0nw⟩|0e⟩|k⟩.

(3) P measures the third register to get output y.
P sends its value to V.
The Test Round ensures that P’s current state (result of U0 on the initial state) is of the form in (59).

(4) P applies U over the first two registers.

(5) P measures the second register in X basis to get d1, d2, ... , dn.
P measures the first register in X basis to get b1, b2, ... , bn.

14

(6) P sends these values to V.
For each i, if hi = 0,

V has meanwhile computed bi, xbi,yi by applying INVG on y in step 3.
V calculates mi = bi

if hi = 1,
V has meanwhile computed the claw (x0,yi , x1,yi) by applying INVF on y in step 3.
V calculates mi = bi ⊕ di · (x0,yi + x1,yi)

Measurement result = (m1,m2, ...,mn)

The statistics of measurement results thus obtained by the verifier who desires to measure in h

bases is DP,h. We now design a procedure that generates a state ρ
(1)
h , whose statistics of measure-

ment in h bases D
ρ
(1)
h ,h

matches DP,h. Note that ρ(1)h is not a quantum state in the traditional sense

because the state itself depends on the bases states h. Through a series of small changes to the
construction, we aim to construct a state that is well defined and whose measurement statistics
match that of M1. First, the construction for ρ(1)h is

CONSTRUCTION C1(U0, U)

(1) or i = 1 to n, generate (ki, tki) from GENG if hi = 0, or from GENF if hi = 1.

(2) Perform unitary U0 on an initial state |0n⟩|0nw⟩|0e⟩|k⟩.

(3) Measure the third register to get output y.

(4) Apply U over the first and second registers.

(5) Measure the second register in X bases to get d1, d2, ... , dn.

(6) For each i = 1 to n,
if hi = 0, do nothing in this step.
if hi = 1,

Get the claw (x0,yi , x1,yi) = INVF (yi, tki).
Apply Zdi·(x0,yi

+x1,yi
) to ith qubit in the first register

The resulting state (in the first register) is defined as ρ(1)h .
Measurement result is obtained by measuring ρ

(1)
h in the basis specified by h.

To be completed ..

References

[BL08] Jacob D Biamonte and Peter J Love. Realizable hamiltonians for universal adiabatic
quantum computers. Physical Review A, 78(1):012352, 2008.

[KKR06] Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian
problem. Siam journal on computing, 35(5):1070–1097, 2006.

[KSVV02] Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical
and quantum computation. Number 47. American Mathematical Soc., 2002.

15

[Mah18] Urmila Mahadev. Classical verification of quantum computations. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 259–267. IEEE,
2018.

[MF16] Tomoyuki Morimae and Joseph F Fitzsimons. Post hoc verification with a single prover.
arXiv preprint arXiv:1603.06046, 2016.

[MNS16] Tomoyuki Morimae, Daniel Nagaj, and Norbert Schuch. Quantum proofs can be veri-
fied using only single-qubit measurements. Physical Review A, 93(2):022326, 2016.

16

