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Abstract

Commitment is a classic two-phase cryptographic protocol. Here a committer encrypts a
string and sends it to the receiver in the commit phase. The string is then revealed in
the reveal phase to the receiver; such a verifier then accepts the string only if it matches
the original one. It is well known that noisy channels offer a valuable resource to realise
unconditionally-secure or information-theoretically secure commitment.

The statistics of noisy channels, however, may be imprecisely characterised. Such un-
reliable noisy channels have been of active interest to the cryptographic community. In
this work we study a wide range of unreliable channels; find out the regimes of parameters
over which commitment is possible. We present new results for commitment throughput,
i.e., commitment capacity for several such channels. Over discrete alphabet, we complete
the study on elastic channels, reverse elastic channels, compound channels and unfair noisy
channels. The results bring to the fore an the interplay between two forms of unreliability
compoundness and elasticity. Motivated by the interesting trends that have come to light,
we propose and study an even more generalised “asymmetric unfair noisy channels” for a
wider perspective. We initiate a study over unreliable continuous channels too, by proposing
and investigating commitment over “Gaussian unfair noisy channels.”
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Chapter 1

Introduction

1.1 What is commitment?

We start off by motivating the commitment problem with a coin toss example.

1.1.1 Coin toss example

Coin toss is a commonly used method to rule on some dispute between two conflicting parties
without being partial to either of them. In a cricket match for example, the captains from
both the teams want to decide who is to bat or bowl in the first innings. They do that with
a coin toss. Usually the host team captain (the tosser T ) brings a coin and tosses it into
the air. The away team captain (the guesser G) guesses a choice “Heads” or “Tails” and
shouts it out while the coin is still mid air. If the outcome matches the guess, G wins, else
T wins. The winning captain then chooses whether to bat or bowl. The scheme works on
the presumption that G has no hint or tool to predict the toss outcome. Now, imagine a
highly sophisticated guesser G who is able to accurately determine the coin trajectory and
so always guesses correctly. The above scheme fails to remain impartial in this case.

As an attempt towards resolving this issue, one may suggest G to make a guess before
even T tosses the coin. But that puts T in a supremely advantageous position, who with his
knowledge of the coin structure, can manipulate the outcome by launching the coin at one
desired trajectory so that it lands excatly on the target side. This again compromises with
the intended impartiality of the scheme.

Now, hear out another modified scheme. We ask G to commit to a choice “Heads” or
“Tails”, by whispering it to an umpire first, before T tosses the coin. Only after the toss
is finished, G reveals his choice. T can verify that the revealed choice is indeed what G
had committed to earlier by checking with the referee. This way T would not have any
information on G’s guess to base a target to manipulate the toss outcome to. Likewise G
would also have no idea about the trajectory of the coin toss at the time when he commits.
This assures the intended impartiality. Note here that we rely heavily on the trustworthiness
of a third party, the umpire. Such a trusted thrid party may be not always be easy to establish
in more complicated systems where a similar functionality is desired.
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1.2. REALISATION OF COMMITMENT: A LITERATURE SURVEY

1.1.2 Commitment

In general, commitment is an interactive protocol that happens between two participants,
a committer, say Alice and a verifier, say Bob. It takes place over two phases. In the first
phase, the commit phase, Alice commits to a string, but keeps it hidden from Bob. Only
in the second phase, the reveal phase, Alice reveals her string to Bob who later verifies.
As a security guarantee Bob may want to flag out anytime Alice reveals a string different
from what she has committed to, thus binding her to the committed string. We call this
bindingness. Concealment is another guarantee which ensures that Alice’s string remains
hidden from Bob until the reveal phase. We will define these terms more formally later.

This functionality of commitment can find large applications. It is widely used as a
cryptographic primitive in many practical tasks like sealed bid auctions [NS10], zero knowl-
edge proofs [NS10], contract signing [EGL85] and secure multiparty computations [GMW87].
Modern technologies like blockchains also offer a great avenue to leverage the functionality
offered by commitment [WSL+19].

1.2 Realisation of commitment: A literature survey

One way to realise commitment is by using an active trusted third party as discussed in the
coin toss example above, but as already mentioned, such active trustworthiness is not an
easy to procure, especially in complicated cryptosystems.

The earliest forms of commitment schemes, studied by Blum [Blu83], did not actually
use any additional non-trivial resources beyond simple local computations and message ex-
changes between the two participants. However, the security of the schemes heavily relied
on the assumption that the parties could not compute super-polynomial time-complex prob-
lems. In other words, these schemes were only conditionally secure. More precisely these
schemes were either conditionally concealing or computationally binding or both. Condi-
tionally concealing schemes assumed polynomial time bounds on computational power of
Bob and were therefore secure from Alice’s point of view. Analogously conditionally binding
schemes required computational bounds on Alice and were therefore secure from Bob’s point
of view.

It was found in [DKS99], that without these computational bounds, commitment is ac-
tually impossible. The above schemes were therefore majorly flawed. Especially with the
advent of quantum technologies, there is a possibility of efficient computation (in polynomial
time) of certain problems that are so far thought to be super-polynomial time-complex, like
finding integer factorisation and discrete logarithms of large numbers [Sho94].

It is pertinent to look for ways to realise commitment with security that is guaranteed
beyond computational assumptions. Since, plain local-computations and message exchanges
are not enough to realise unconditionally secure commitment [DKS99], the community began
to look for other non-trivial resources that could help. Fortunately, noisy channels were found

10



1.3. COMMITMENT OVER NOISY CHANNELS: A LITERATURE
SURVEY

to be very useful in this regard.

1.3 Commitment over noisy channels: A literature sur-

vey

Wyner’s seminal work on wire-tap channels [Wyn78] first explored the potential of noisy
channels for security. He was able to achieve information theoretic secure transmission of
information using discrete memoryless noisy channels. It is to note that information theo-
retic from of security is not conditional on any computational assumptions. This inspired
the community to explore noisy channels as a resource for other cryptographic protocols as
well.

It is worth pointing out here that perfectly secure commitment is not possible even with
the use of noisy channels. Inherently, perfect concealing guarantees for Alice would mean a
compromise on bindingness guarantees for Bob and vice versa. The intuition with the use
of noisy channels is that it probabilistically brings down the likelihood of failure of both
concealment and bindingness guarantees to as small as needed. Markedly, this form of infor-
mation theoretic security is not conditional on any computational assumptions. We discuss
now the state of developments in information theoretic secure forms of commitment.

Inspired by [Wyn78], Crépeau et al. [CK88] were able to realise information theoretic
secure commitment and another closely related cryptographic protocol, oblivious-transfer
for the first time using binary symmetric channels(BSCs c.f. definition 3.5). They improved
the results in [Cré97] by finding computationally efficient1 ways to realise commitment.
Winter et al. in [WNI03], characterised the notion of commitment capacity as the maximum
number of bits that can be committed per use of the noisy channel. They also characterised
the capacity expression for general alphabet discrete memoryless channels (DMCs). Recently
in one of our works [MYMB21] we explored certain cost functions and restrictions associated
with input symbols over noisy channels. We characterised commitment capacity over such
cost constrained DMCs and found a dual expression for the same.

1.3.1 Commitment over unreliable noisy channels

Often times, the noisy channel resource may not have a perfect statistical characterisation.
For instance, the cross over probability p of a binary symmetric channel (BSC(p)) may not
be exactly known. More perniciously, one of the participants may have control over this
value, and seeks to maliciously use it to their advantage. As an example, say two parties
purchased a noisy channel box2 with two access points, one for the sender and another for
the receiver. The box is to take in messages from the sender and give it to the receiver after

1The computationally efficient notion of commitment schemes is that if the protocols can be executed in
polynomial time steps as a function of input size. That said, the security of the scheme would still be secure
against adversaries of any computational power

2This is a hypothetical example. By purchasing a noisy channel box, we emphasise that we use noise as
a resource rather than as an obstacle, as is used in most reliable communication problems.

11



1.3. COMMITMENT OVER NOISY CHANNELS: A LITERATURE
SURVEY

adding random noise of some given statistic. Due to some fault in manufacturing, say the
box doesn’t exactly perform according to the given statistic but is known to not vary too
far away from it. Or one of the player knows how to tune the statistic but doesn’t reveal it
to the other, potentially to make some benefit out of this extra knowledge.

We call these imperfectly characterised channels in general as unreliable noisy channels,
also referred to hereafter as simply unreliable channels. Damg̊ard et al. [DKS99] initiated
a systematic study of unreliable channels by introducing unfair noisy channels(UNCs). A
UNC[γ, δ], (0 < γ ≤ δ < 1

2
) is essentially a BSC(p) where the transition probability p can be-

long to [γ, δ] interval. Additionally, a cheating party can also maliciously control this value p,
by setting it to some value in the same interval, [γ, δ]. [DKS99] characterised a regime of the
parameters γ and δ for which where commitment is not possible over UNC[γ, δ]. Crépeau
et al. [CDN20] recently improved the result by finding an expression for the commitment
capacity i.e., the maximum commitment throughput over UNCs, for parameters within the
possibility regime. The capacity expression was CUNC[γ,δ] = H2(γ)−H2(

δ−γ
1−2γ

).

In the current work, we emphasise primarily on two forms of unreliablility, viz., compound-
ness and elasticity. We study a class of compound BSC channels which model compoundness
form of unreliability. A compound BSC is a BSC channel where the crossover probability is
not precisely known but is said to be in some given real range. In this work we formulate the
commitment capacity expression for compound BSCs [YMBM21] and also extend the result
to general alphabet discrete compound channels [YMJB22]. The second form of unreliabil-
ity, elasticity was first proposed earlier by Khurana et al. [KMS16] through elastic channels
(ECs) and Reverse elastic channels(RECs). In essence, an elastic channel EC[γ, δ] behaves
like a BSC(δ) except that a cheating receiver can control the channel by setting the crossover
probability to some value in [γ, δ]. It is the same in RECs, except that the sender has the
power here rather than the receiver. Crepeau et al. [CDN20] characterised the commitment
capacity expression of ECs to be CEC[γ,δ] = H2(γ). We find out the commitment capacity of
RECs in [BJMY21,BJMY22a], to complete the picture.

There are some interesting trends in the behaviour of elasticity and compoundness in re-
gard to commitment, which we address in [BJMY22a]. It is worth noting that UNCs model
a combined form of unreliability of both compoundness and elasticity. While this combined
form introduces an impossibility regime in UNCs, commitment is known to be always pos-
sible over ECs, RECs and compound channels. These trends motivated us to study a more
general class of unreliable channels, which we called Asymmetric UNCs [BJMYon]. The
framework of Asymmetric UNCs that we define specialises deftly to ECs, RECs and UNCs.

We discussed so far commitment over discrete alphabet channels. Nascimento et al.
[NBSI08] studied commitment over continuous alphabet additive white gaussian noise(AWGN)
channels. AWGN channels add a random gaussian variable as noise to an input from the real
alphabet. One fascinating result is that non-trivial AWGN channels have infinite commit-
ment capacity. Subsequently [OM08] showed a constructive commitment scheme over AWGN
channels. In one of our works(in preparation) [BJMY22b], we present a class of unreliable
gaussian channels called the Gaussian unfair noisy channels (Gaussian-UNCs). Gaussian-
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1.4. CONTRIBUTIONS

UNCs add a zero-mean random gaussian noise with variance not precisely charecterised, but
is known to be in some interval. We see that unlike AWGN channels, it is not apparent that
Gaussian-UNCs have an infinite commitment capacity. In fact, we find Gaussian-UNCs have
an impossibility regime where commitment is not possible at all, analogous to the UNCs of
the binary alphabet. Furthermore, commitment has also been studied more generally over
noisy quantum channels (for its reliable variants) [HW22]. As was with classical channels,
commitment was also found to be impossible over noiseless quantum channels [LC97].

1.4 Contributions

For clarity purposes, we highlight here the important contributions of this thesis. Before that,
it is worthwhile to recapitulate some important contributions of the previous thesis [Mam21]
which is a direct precursor to the current work.

• In [MYMB21], we characterised cost constraints associated with noisy channels. As an
extension to [WNI03], we found the commitment capacity expression and its dual over
cost constrained DMCs.

• We studied commitment over compound BSCs [YMBM21] and characterised the ca-
pacity expression via an achievability and converse framework.

Through this thesis,

• We extend our past results on commitment over compound BSCs [YMBM21] to general
discrete alphabet compound channels in [YMJB22]. Inspired by the methods used in
[IMNW06], we propose a computationally efficient capacity rate achieving commitment
protocol.

• Additionally, we look at cases when parties are state-aware (possibly in a one-sided
manner), where a state-aware party(s) is one which knows a priori the exact compound
state instantiated. We see that state-awareness at the committer can increase the
commitment capacity of the compound-DMC.

• We study and characterise commitment capacity over RECs in [BJMY21,BJMY22a].
The result settles a recent conjecture in [CDN20].

• The results shed light upon an interesting interplay between the two forms of unrelia-
bility, viz., compoundness and elasticity. In particular, we show that unlike in UNCs
(which combine both forms of unreliability) where the commitment capacity can be
zero, capacity for binary channels with exclusively one form of unreliability have strictly
positive commitment throughput.

• Motivated by these observations, we model a new more generalised form of unreliable
BSCs, the Asymmetric-UNCs in [BJMYon]. We find a general impossibility result
that encompasses all the variants BSC, EC, REC, and UNC. We also propose an
achievability scheme over the possibility regime.

13



1.5. THESIS ORGANISATION

• We also propose an unreliable version of the AWGN channel, called the Gaussian-
UNCs [BJMY22b]. Analogous to the UNCs [DKS99], Gaussian-UNCs also are found
to have a parameter regime where commitment is impossible to realise.

• We also present partial achievability rate schemes over Gaussian UNCs. Unlike for
AWGN channels [NBSI08], it is not apparent that non trivial Gaussian-UNCs have
infinite capacity. The results bring a new perspective on the infinite capacity of the
classical AWGN channels, as classical AWGN channels happen to be one special trivial
Gaussian-UNC.

1.5 Thesis organisation

We first introduce preliminaries in chapter 2, then establish the commitment problem setup
in chapter 3, where we also introduce different noise channel models along with the be-
haviours of different agents. We then discuss our results on compound channels and re-
verse elastic channels in chapters 5 and 6 respectively. Then we study commitment over
Asymmetric-UNCs and Gaussian-UNCs. Lastly we conclude in chapter 9 and mention some
past publications and references.
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Chapter 2

Preliminaries

2.1 Notations

• We denote random variables by upper case letters (eg. X), the values they take by
lower case letters (eg., x), and their alphabets by calligraphic letters (eg. X ). Unless
stated otherwise, all sets are assumed to be finite.

• We denote random vectors and the accompanying values they take by boldface letters
(e.g., X = (X1, X2, · · · , Xn), x = (x1, x2, · · · , xn), resp.). Here n denotes the block
length of communication.

• The set of real numbers, non-negative real numbers and real vectors (of length n) are
denoted by R, R+, and Rn respectively. The set of natural numbers is denoted by N.

• For any natural number a ∈ N, let [a] := {1, 2, · · · , a}. Let Xi = (X1, X2, · · · , Xi) and
Xj

i = (xi, Xi+1, · · · , Xj) denote vectors.

• We denote the Hamming distance between two vectors, say x,x′ ∈ X n by dH(x,x
′) =∑n

i=1 1{xi ̸=x′
i} , where 1A denotes the indicator of A.

• Let PX denote the distribution of X ∈ X ; P(X ) denotes the simplex of probabil-
ity distributions on set X . Distributions for multiple random variables are similarly
defined.

• Let P(X|Y) denote the set of all conditional probability distributions on random vari-
able X ∈ X conditioned on Y ∈ Y . We denote by PX , PX|Y and PX,Y the probability
distribution on random variables X ∈ X , conditional probability distribution on ran-
dom variable X ∈ X conditioned on random variable Y ∈ Y and joint probability
distribution on the pair of random variables (x, Y ) ∈ X ×Y . For the latter, we denote

the marginal distribution on random variable X by [PX,Y ]X . Given PX , P
(n)
X denotes

the n-fold memoryless extension of PX .

• Let P(A) denote the probability of event A. Deterministic and random functions will
be denoted by lower case letters (eg. f) and by upper case letters (e.g., F ) respectively.
Let X ∼ Bernoulli(p) denote a Bernoulli random variable X with parameter p ∈ [0, 1].
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2.2. INFORMATION QUANTITIES

Let p∗q := p(1−q)+(1−p)q, where p, q ∈ [0, 1]. Given PX , QX ∈ P(X ), let ||PX−QX ||
denote the statistical (or variational) distance between PX and QX .

2.2 Information quantities

We also need some information quantities to present our results; we begin by defining these
useful information measures (see, for instance, [BB11,CK11] for details).

Given a discrete random variable X ∈ X and α ∈ [0, 1) ∪ (1,∞), the Renyi entropy of
order α is defined as:

Hα(X) =
1

1− α
log

(∑
x

(PX(x))
α

)
.

Themax entropy H0(X), (Shannon) entropy H(X), collision entropy Hc(X) and min entropy
H∞(X) are special cases of Renyi entropy of order α, where α = 0, α → 1, α = 2 and α → ∞
respectively:

H0(X) = log |{x ∈ X |PX(x) > 0}|

H(X) = lim
α→1

Hα(X) =
∑
x∈X

PX(x) log

(
1

PX(x)

)

Hc(X) = H2(X) = − log

(∑
x∈X

PX(x)
2

)

H∞(X) = lim
α→∞

Hα(X) = min
x

log

(
1

PX(x)

)
Their conditional versions are defined as:

H0(X|Y ) = max
y
H0(X|Y = y)

H(X|Y ) =
∑
y∈Y

PY (y)H(X|Y = y)

Hc(X|Y ) =
∑
y∈Y

PY (y)Hc(X|Y = y)

H∞(X|Y ) = min
y
H∞(X|Y = y)

The min-entropy is the Renyi entropy for order α → ∞,

H∞(X) = lim
α→∞

Hα(X) = min
x

log

(
1

PX(x)

)
.

Its conditional version is given by. The max-entropy (i.e., Renyi entropy of order α → 0) is
defined as

H0(X) = log |{x ∈ X |PX(x) > 0}|.
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2.2. INFORMATION QUANTITIES

The conditional max-entropy is Similarly, the collision entropy (Renyi entropy of order α = 2)
and its conditional version are ,

Hc(X|Y ) =
∑
y∈Y

PY (y)Hc(X|Y = y).

For ϵ ∈ [0, 1), the ϵ-smooth max entropy, ϵ-smooth min entropy and their conditional
versions are given by:

Hϵ
0(X) := min

X′:||PX′−PX ||≤ ϵ
H0(X

′)

Hϵ
∞(X) := max

X′:||PX′−PX ||≤ ϵ
H∞(X ′)

Hϵ
0(X|Y ) := min

X′,Y ′:||PX′,Y ′−PX,Y ||≤ ϵ
H0(X

′|Y ′)

Hϵ
∞(X|Y ) := max

X′,Y ′:||PX′,Y ′−PX,Y ||≤ ϵ
H∞(X ′|Y ′)

2.2.1 Chain Rules for smooth entropies

We now recapitulate some well known chain rules for these entropic notions.

Claim 2.1 (Min-entropy [VDTR13]). For any 0 ≤ µ, µ′, µ1, µ2 < 1 and any set of jointly
distributed random variables (X, Y,W ), we have

Hµ+µ
′

∞ (X, Y |W )−Hµ
′

∞(Y |W )

≥ Hµ
∞(X|Y,W ) (2.1)

≥ Hµ1
∞ (X, Y |W )−Hµ2

0 (Y |W )− log

[
1

µ− µ1 − µ2

]
(2.2)

Claim 2.2 (Max-entropy [VDTR13,RW05]). For any 0 ≤ µ, µ′, µ1, µ2 < 1 and any set of
jointly distributed random variables (X, Y,W ), we have

Hµ+µ
′

0 (X, Y |W )−Hµ
′

0 (Y |W )

≤ Hµ
0 (X|Y,W ) (2.3)

≤ Hµ1

0 (X, Y |W )−Hµ2
∞ (Y |W ) + log

[
1

µ− µ1 − µ2

]
(2.4)

2.2.2 Information quantities for continuous random variables

Let X ∈ X and Y ∈ R represent a discrete random variable and a continuous random
variable respectively. For every x ∈ X , the conditional probability density function (PDF)
fY |X(y|x) is assumed to be Riemann integrable. Then, the PDF of Y is given by

fY (y) =
∑
x∈X

PX(x)fY |X(y|x)
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is also Reimann Integrable.
Further, the conditional probability PX|Y (x|y) is given by

PX|Y (x|y) =
PX(x)fY |X(y|x)

fY (y)

The conditional entropy of X given the random variable Y is given by:

H(X|Y ) = −
∫ ∞

−∞
fY (y)

(∑
x∈X

PX|Y (x|y) log(PX|Y (x|y)

)
dy

2.3 Useful definitions

Here are some definitions of certain structures which will be useful throughout this work.

Definition 2.1 (ξ-Univeral hash functions [CW79]). Let H be a class of functions from
X to Y. H is said to be ξ−universal hash function, where ξ ∈ N, if when h ∈ H is
chosen uniformly at random, then (h(x1), h(x2), ...h(xξ)) is uniformly distributed over Yξ,
∀x1, x2, ...xξ ∈ X .

Definition 2.2 (Strong randomness extractors [NZ96,DRS04a]). A probabilistic polynomial
time function of the form Ext: {0, 1}n × {0, 1}d → {0, 1}m is an (n, k,m, ϵ)-strong extractor
if for every probability distribution PZ on Z = {0, 1}n, and H∞(Z) ≥ k, for random variables
D (called ’seed’) and M , distributed uniformly in {0, 1}d and {0, 1}m respectively, we have
||PExt(Z;D),D − PM,D|| ≤ ϵ.
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Chapter 3

Problem Setup

Now that we are equipped with all the necessary preliminaries, let us start our discussion on
commitment in more detail. In this chapter we first define commitment in the context of its
realisation over a general noisy channel. Then we will also look at the definitions of some
unreliable channel models which we lightly introduced in chapter 1 (Section 1.3).

3.1 Definition of commitment

In the setup of commitment over noisy channels, we have two parties, a committer Alice and
a verifier Bob. The commitment scheme itself involves two phases, the commit phase and
reveal phase, each involving a series of steps that are prescribed for the parties to follow.
Alice starts with a commit string c that she would commit to. Alice and Bob are capable of
performing any computation and also have access to individual local randomness sources. As
shown in figure 3.1, they share a two-way public authenticated noiseless link through which
they can exchange messages publicly any number of times. There is also a one-way noisy
channel (say N ) that goes from Alice to Bob that is used say n number of times. Crucially,
the noisy channel, N is characterised by its behaviour when both the agents Alice and Bob
are honest, and when either of them is cheating. We do not care about the case when both
of them are cheating for reasons we will see later in the chapter. Honest agents adhere to
all the steps dictated by the scheme never attempting to thwart the security guarantees,
whereas cheating parties may try to deviate from the steps to suit to their advantage. Here
is the formal definition of commitment for a given noisy channel and its stated behaviours
over various natures of the agents.

Definition 3.1 (Commitment protocol over a noisy channel). An (n,R)-commitment proto-
col is a two way interactive protocol between the committer Alice and receiver Bob over two
phases, viz., the commit phase followed by the reveal phase over a given noisy channel (say
N ). The goal of the protocol is to allow commitment between Alice and Bob over a random
string C ∈ [2nR] available to Alice.

• Commit phase: Given a uniformly random commit string C ∈ [2nR], Alice transmits
X = (X1, X2, · · · , Xn) ∈ X n over the given noisy channel. While the n-rounds of one-
way communication takes place over the noisy channel N , Alice and Bob also exchange
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3.1. DEFINITION OF COMMITMENT

Figure 3.1: Commitment setup over a general noisy channel N

messages over the public noiseless link (these messages are allowed to be arbitrarily
many but assumed to be finite in size). Let M denote the entire collection of the
exchanged messages (also called the transcript of the protocol) over the public channel
at the end of commit phase. If KA and KB denote the sources of local randomnesses
of Alice and Bob, Let VA and VB be their respective views, at the end of the commit
phase; the view is the collection of all the random variables that a party has access to
at the end of the commit phase. Note that VA = (C,KA,X,M) and VB = (Y,M,KB).
In general, the codewords sent by Alice in one round may depend on her view from all
the previous rounds. The same is true for messages that are exchanged.

• Reveal phase: In this phase, communication between Alice and Bob occurs only over
the two-way public authenticated noiseless channel. Initially, Alice reveals a pair com-
prising a commit string and a vector 1, say (c̄, x̄) to Bob, where c̄ ∈ [2nR] and x̄ ∈ X n.
Thereafter, Bob runs a test T = T (c̄, x̄, VB), where the test output T ∈ {0, 1}. Here a
test output of 0 indicates that Bob rejects the commit string c̄ and a test output of 1
indicates that Bob accepts the commit string c̄.

We define R as the rate of this (n,R) commitment protocol.

We now define three key parameters of an (n,R) protocol. Let ϵ > 0 be any arbitrary
constant.

Definition 3.2 (ϵ-sound). An (n,R) protocol is said to be ϵ-sound if when both Alice and
Bob are honest and execute the protocol,

P (T (C,X, VB) = 0) ≤ ϵ.

for any state of the channel that gets instantiated.

1Note that the pair (c̄, x̄) may be the same pair that Alice used in the commit phase or a different one
depending on her nature (honest or passively cheating or actively cheating).
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Definition 3.3 (ϵ-concealing). An (n,R) protocol is said to be ϵ-concealing if for a honest
Alice and under any strategy of Bob,

I(C;VB) ≤ ϵ.

for all the corresponding behaviours of the noisy channel.

Definition 3.4 (ϵ-binding). An (n,R) protocol is said to be ϵ-binding if for a honest Bob and
under any strategy of Alice with an accompanying choice of X ∈ {0, 1}n during the commit
phase, and for any two pairs (c̄, X̄), (ĉ, X̂), where c̄ ̸= ĉ, and x̄, x̂ ∈ X n,

P (T (c̄, x̄, VB) = 1 & T (ĉ, x̂, VB) = 1) ≤ ϵ.

for all the corresponding behaviours of the noisy channel.

A rate R > 0 is said to be an achievable rate if for every ϵ > 0 and every n sufficiently
large, there exists an (n,R)-commitment protocol which satisfies all the security guarantees,
i.e., the (n,R)-commitment protocol is ϵ-sound, ϵ-concealing and ϵ-binding. We define the
commitment capacity or capacity of the given noisy channel N as the supremum of all
achievable rates.

3.2 Noisy channel models

In chapter 1, we briefly looked at a few different noisy channels over which we will be
studying commitment. Here we take a discourse into it by formally defining all the relevant
noisy channels.

3.2.1 Reliable models

Let us start with the binary symmetric channels(BSCs).

Definition 3.5 (Binary symmetric channel). A binary symmetric channel BSC with param-
eter p s.t. 0 < p < 1, also called BSC(p) is a channel which takes in a binary valued input
and randomly outputs the input as is with probability 1− p and the logical NOT of the input
with probability p.

A more general reliable noisy channel could be modelled by a discrete memoryless chan-
nel(DMC).

Definition 3.6 (Discrete memoryless channel). A discrete memoryless channel WY |X is a
channel that takes in an input, say x from a given alphabet space and gives out a random
output from to the distribution WY |X=x and independent of any previous inputs.
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3.2. NOISY CHANNEL MODELS

3.2.2 Unreliable models

We look for more channels by modelling the forms of unreliability, compoundness or elasticity.

Definition 3.7 (Compound binary symmetric channel (Compound-BSC)). A compound
BSC with parameters 0 < γ < δ < 1/2, also called CBSC[γ, δ], is a noisy BSC where parties
communicate over a BSC(s), where s ∈ [γ, δ] and unknown to them.

Compound-BSCs model compoundness from of unreliability. Now we look at elasticity
form of unreliability.

Definition 3.8 (Elastic channel (EC)). An elastic channel (EC) with parameters 0 < γ <
δ < 1/2, also called EC[γ, δ], is a noisy BSC where

(i) honest parties communicate over a classic BSC(δ),

(ii) only a cheating Bob can privately set the crossover probability to any value s in [γ, δ].

As one can see, while (compoundness) Compound-BSCs were symmetric in the agents
Alice and Bob, ECs are certainly not. A malicious Bob has a lot more control over the channel
than a malicious Alice can. We can also think of a channel model with a symmetrically
opposite functionality where a malicious Alice can control the channel.

Definition 3.9 (Reverse elastic channel (REC)). A reverse elastic channel (REC) with
parameters 0 < γ < δ < 1/2, also called REC[γ, δ], is a noisy BSC where

(i) honest parties communicate over a classic BSC(δ),

(ii) only a cheating Alice can privately set the crossover probability to any value s ∈ [γ, δ].

CBSCs and ECs, RECs model exclusive forms of unreliability where we have either
compoundness or elasticity. Here is a channel model that has a combined form of unreliability.

Definition 3.10 (Unfair noisy channel (UNC)). An unfair noisy channel (UNC) with pa-
rameters 0 < γ < δ < 1/2, also called UNC[γ, δ], is a noisy BSC where

(i) honest parties communicate over a BSC(s), where s ∈ [γ, δ] and unknown to them,

(ii) any cheating party can privately set s to a value in [γ, δ].

We can also define general alphabet versions of these unreliable channels in a similar
manner. For one, let’s look at a general compound DMC.

Definition 3.11 (Compound-discrete memoryless channel (Compound-DMC)). A com-
pound discrete memoryless channel (compound-DMC) is specified by the channel law given
by the conditional distribution WY |X,s and s ∈ S, where X ∈ X and Y ∈ Y are the channel
input and output, while s ∈ S (S is assumed to be a finite set) is the compound channel state.
The set S is known a priori to all parties, whether honest or malicious, but the instantiated
compound state s ∈ S is not known. We also denote the compound-DMC as {WY |X,s}s∈S .
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Remark 3.1. A compound-DMC {WY |X,s}s∈S can be essentially seen as a collection of

DMCs indexed by s ∈ S, i.e., {W (s)
Y |X}s∈S .

In chapter 5, we also look at certain variations of compound-DMCs bringing forth the
concept of state awareness. One sided state aware channels are different from the Compound-
DMCs of definition 3.11 in that, one of the parties gets to know the channel state s that
gets instantiated, while the party agent still has no idea about s. It appears that two sided
awareness is equivalent to a collection of simple DMC {WY |X}s. We study them in more
detail in chapter 5.

We also propose a new channel that models a general form of unreliability of elastic,
reverse elastic and unfair noisy channels. We call that Asymmetric unfair noisy channels.

Definition 3.12 (Asymmetric unfair noisy channel (Asymmetric-UNC)). An Asymmetric
unfair noisy channel (A-UNC) with parameters 0 < γA, γB < γ < δ < 1/2, also called
Asymmetric-UNC[γ, γA, γB, δ], is a noisy BSC where

(i) honest parties communicate over a BSC(s), where s ∈ [γ, δ] and unknown to them,

(ii) a cheating sender can privately set s to a value in [γA, δ].

(iii) a cheating receiver can privately set s to a value in [γB, δ]

3.2.3 Continuous channels

Here we look at some continuous alphabet noisy channels. The first is the AWGN channel.
As the name suggests, this channel adds white Gaussian noise to the input.

Definition 3.13 (Additive white Gaussian noise channel). An additive white Gaussian noise
channel (AWGN) with parameter σ2 > 0, also called AWGN(σ2) takes in an input from real
alphabet and outputs after adding a random noise that comes from a zero mean Gaussian
distribution with variance σ2.

We generalise this definition to model unreliability via Gaussian unfair noisy channels.

Definition 3.14 (Gaussian unfair noisy channels). A Gaussian unfair noisy channel (Gaussian-
UNC) with parameters γ2, δ2 s.t. 0 < γ2 ≤ δ2, also called Gaussian-UNC[γ2, δ2], is an
AWGN where

(i) honest parties communicate over an AWGN(s2) where s2 ∈ [γ2, δ2] and is unknown to
them,

(ii) any cheating party can privately set s to a value in S.

The elasticity of Gaussian-UNC[γ2, δ2] is E := δ2 − γ2.
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3.3 Behaviours of the participating agents

While we did indicate the differences in the “honest” and “cheating” behaviours while stat-
ing the security guarantees, we can think of more non-trivial behaviours while executing a
general commitment scheme (of the form described in the section 3.1). Differentiating these
behaviours would be crucial in analysing the results and proofs of later chapters. Honest
agents adhere to all the steps dictated by the scheme never attempting to thwart the secu-
rity guarantees, whereas cheating parties may try to deviate from the steps to suit to their
advantage. Honest agents adhere to all the steps dictated by the scheme never attempting
to thwart the security guarantees, whereas cheating parties may try to deviate from the
steps to suit to their advantage. More specifically there are two kinds of cheating strategies,
active and passive. A passively cheating party does not directly deviate from carrying out
the laid out steps, but may attempt to gain knowledge of some variables which they are not
meant to have access to. An actively cheating party on the other hand freely deviates from
the prescribed steps in addition to his attempts to get hold of knowledge of extra variables.
Moreover, both kinds of cheating parties may have an added ability to control certain pa-
rameters the channel, depending on its definition.

In the models that we study (in section 3.2), passive and active cheating strategies offer
equal power in regard to control over the channel, and honest parties do not get any control.
Although we do study certain state-awareness models (in section 5.5), where an honest party
cannot directly control the channel, but may gain knowledge of the state that gets instanti-
ated. Philosophically, it makes sense to study more complicated behaviours too, as long as
the channel and the protocol are well defined. All the while, it is to be borne in mind that
we offer security guarantees (in section 3.1 only to honest parties. More explicitly, we offer
bindingness guarantees to an honest Bob, concealment to an honest Alice and soundness
when both are honest. Philosophically, we do not seek to offer any guarantees when both
the agents are cheating. For this reason, we do not also care about how the protocol plays
out in such a case. Nor is it relevant to study the behaviour of the channel resources when
both the agents are cheating, and so it is not a concern even if the channel is not well defined
under that sub case.

24



Chapter 4

Review of prior work

In this chapter we present a summary of some relevant previous work. The points we make
here will be helpful in understanding some results as we will be making some interesting
analysis and comparisons in the later chapters. Let us start with some past results of
commitment over reliable channels.

4.1 Commitment over general DMCs

[WNI03] characterises this expression for a class of non redundant DMCs.

Definition 4.1 (Non-redundant DMC). A discrete memoryless channel {WY |X} is non-
redundant if ∀x ∈ X and ∀PX ∈ P(X ), such that PX(x) = 0,

WY |X(·|x) ̸=
∑
x′∈X

PX(x
′)WY |X(·|x′)

Theorem 4.1 (Commitment capacity of a DMC [WNI03]). The commitment capacity of
a non-redundant Discrete Memoryless Channel WY |X over the input and output alphabet X ,
Y, CDMC(WY |X) is

CDMC(WY |X) = max{H(X|Y ) : r.v.s X, Y s.t. Distr(Y |X) = WY |X} (4.1)

Every redundant DMC can be mapped to a non-redundant DMC by removing some
redundant input symbols (those for which the equality in definition 4.1 gets satisfied). The
commitment capacity of the obtained non-redundant DMC turns to be same as that of the
original redundant DMC. So, using theorem 4.1, one can evaluate the capacity expression of
any DMC.

Remark 4.1 (Commitment capacity of a BSC). The commitment capacity of a BSC(p)
(0 < p < 1/2) can be found to be H2(p) by evaluating the capacity expression of general
discrete memory channels from theorem 4.1.

CBSC(p) = H2(p) (4.2)

As an extension to the result on DMCs, we study (in one of our earlier works [MYMB21])
commitment for certain cost-constrained DMCs.

25
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4.1.1 Commitment over cost constrained DMCs

Often times, the input to a channel may have some restrictions. We model such behaviour
via certain linear costs and cost constraints associated with each input symbol. For such
cost constrained general DMCs that are non redundant.

Theorem 4.2 ( [MYMB21]). LetWY |X be a (ρX ,Γ)-non-trivial discrete memoryless channel.
Then, the commitment capacity ofWY |X under the input constraint Γ, where Γ ≥ minx ρX(x),
is given by

CDMC(WY |X)(ΓX) = max
PX :E[ρX(X)≤Γ]

H(X|Y ) (4.3)

The commitment capacity specializes to that of the (input) unconstrained capacity [WNI03]
as S(Γ) = X n when input is unconstrained, i.e., all x are feasible vectors. The proofs of
these theorems involves a converse upper bound and a capacity rate achieving commitment
protocol built on a random binning codebook scheme. We have also a dual characterisation
for the same capacity expression

Theorem 4.3 ( [MYMB21]). LetWY |X be a (ρX ,Γ)-non-trivial discrete memoryless channel.
Then, for any Γ ≥ minx∈X ρX(x),

CDMC(ΓX) = min
γ≥0

max
QY

log

[∑
x∈X

2−D(WY |X(·|x)||QY (·))+γ(Γ−ρX(x))

]
. (4.4)

Furthermore, the maximizing distribution QY is unique and QY = [PXWY |X ]Y , where PX is
any optimizer of (4.3).

The dual capacity characterization offers an alternate method to compute the commit-
ment capacity. Given the channel law and the size of the input and output alphabets,
one may prefer either of the two results depending on the computational and/or analytical
tractability of the concomitant optimization problems. An interesting consequence of this
result is that the unique optimizing output distribution, say Q∗

Y ∈ P(Y), is the output
distribution corresponding to every input distribution that is an optimizer in (4.3).

4.1.2 Commitment over Compound-BSCs

In another of our works [YMBM21], we determined the commitment capacity of Compound
BSCs defined in Definition 3.7.

Theorem 4.4 (Compound BSC commitment capacity [YMBM21]). The commitment ca-
pacity of Compound-BSC[γ, δ] (0 < γ ≤ δ < 1/2)is

CC−BSC[γ,δ] = H2(γ) (4.5)

The proof of this is inspired by an approach in [CDN20], but with some notable differ-
ences. We find a converse upperbound and then present a computationally efficient scheme
that achieves that rate bound.
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4.1.3 Commitment over ECs

We also have a similar capacity expression for Elastic channels from [CDN20]. It turns out
that the capacity of Elastic channel CEC[γ,δ] equals that of Compound BSC CC−BSC[γ,δ].

Theorem 4.5 (EC commitment capacity [CDN20]). The commitment capacity of EC[γ, δ]
(0 < γ ≤ δ < 1/2)is

CEC[γ,δ] = H2(γ) (4.6)

4.1.4 Commitment over UNCs

The capacity of UNCs [CDN20] was found to be

Theorem 4.6 (UNC commitment capacity [CDN20]). The commitment capacity of UNC[γ, δ]
(0 < γ ≤ δ < 1/2) for δ ≤ γ ⊛ γ is

CUNC[γ,δ] = H2(γ)−H2

(
δ − γ

1− 2γ

)
(4.7)

The proofs of theorems 4.5 and 4.6 also involve a similar achievability scheme involving
two rounds of hash functions and a converse scheme involving similar information theoretic
reduction techniques. Theorem 4.6 completes the study on UNCs along with the impossibility
result of [DKS99].

Theorem 4.7 (Impossibility region for UNCs [DKS99]). Commitment is not possible over
a UNC[γ, δ] (0 < γ ≤ δ < 1/2) with δ ≥ γ ⊛ γ.

By using slightly modified techniques, we study the capacity expression for UNCs in
[BJMY22a,BJMY21]. We discuss the results more elaborately in chapter MM:sasa. Now
let us review commitment over continuous channels.

4.2 Commitment over continuous channels

4.2.1 Commitment over AWGN channels

Here is Nascimento et al.’s infinite capacity result over AWGNs from [NBSI08]

Theorem 4.8 (Commitment capacity over AWGNs [NBSI08]). The commitment capacity
of a nontrivial AWGN channel i.e., AWGN(σ2) s.t. σ2 > 0, is infinite irrespective of the
input power constraint.

CAWGN(σ2) → ∞ (4.8)
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Chapter 5

Commitment over Compound-DMCs

We have from theorem 4.1, the capacity expression for general discrete memoryless channels.
We also have from theorem 4.4, the capacity expression for Compound-BSCs. In this chapter
we will expand upon these previous results. We start off by introducing the problem setup
from chapter 3 specific to Compound-DMCs, for which we state our commitment capacity
result and then prove it. Additionally we also discuss in detail the concept of state awareness
which we lightly alluded to in section 3.3 and characterise commitment over those channels
too using similar proofs.

5.1 Problem setup

Figure 5.1: Commitment over a compound-DMC

In figure 5.1, we specialise the commitment problem setup of figure 3.1 to compound-
DMC. We state the whole problem setup for completeness. Alice and Bob are two mutually
distrustful parties who wish to commit on a random bit string C ∈ [2nR] (we specify R > 0
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later); C is available to Alice. The two parties have access to a compound -discrete memory-
less channel (Compound-DMC). Alice initiates n rounds of one-way communication with Bob
over the Compound-DMC. Her transmitted codeword over the Compound-DMC is denoted
byX, X ∈ Rn. Bob observes the noisy versionY of the Alice’s transmitted codewordX. No-
tably the statistics ofY depend on the DMCWY |X,s that gets instantiated from {WY |X,s}s∈S .
Further, both Alice and Bob can privately randomize; let KA ∈ KA and KB ∈ KB denote
the private randomness at Alice and Bob respectively. The parties also share a two-way,
public authenticated noiseless public link. Any message transmitted over the bi-directional
noiseless channel can have causal dependence on the information available to the parties at
that instant.

A general (n,R) commitment protocol over a Compound-DMC{WY |X,s}s∈S is of the form
as in definition 3.1. Let us revise from definitions 3.2, 3.3 and 3.4, the accompanying security
guarantees, viz., soundness, concealment and bindingness. in context to the Compound-
DMCs.

• ϵ-soundness: An (n,R) protocol is said to be ϵ-sound if when both Alice and Bob are
honest and execute the protocol,

max
s∈S

P (T (C,X, VB) = 0|S = s) ≤ ϵ. (5.1)

• ϵ-concealing: An (n,R) protocol is said to be ϵ-concealing if for a honest Alice and
under any strategy of Bob,

max
s∈S

I(C;VB|S = s) ≤ ϵ. (5.2)

• ϵ−bindingness: An (n,R) protocol is said to be ϵ-binding if for a honest Bob and
under any strategy of Alice with an accompanying choice of X ∈ {0, 1}n during the
commit phase, and for any two pairs (c̄, X̄), (ĉ, X̂), where c̄ ̸= ĉ, and x̄, x̂ ∈ X n,

max
s∈S

P
(
T (c̄, x̄, VB) = 1 & T (ĉ, x̂, VB) = 1

∣∣∣S = s
)
≤ ϵ. (5.3)

A rate R > 0 is said to be an achievable rate if for every ϵ > 0 and every n sufficiently
large, there exists an (n,R)-commitment protocol which satisfies all the security guarantees,
i.e., the (n,R)-commitment protocol is ϵ-sound, ϵ-concealing and ϵ-binding. We define the
commitment capacity or capacity of the compound-DMC as the supremum of all achievable
rates.

5.1.1 Non-redundant Compound-DMCs

Recall that information-theoretically secure commitment is impossible over noiseless chan-
nels [Blu83]. In fact, such channels belong to a larger class of DMCs called trivial chan-
nels [WNI03]. We now extend this notion to compound-DMCs. We first define the class of
non-redundant compound-DMCs which help realize non-trivial commitment.
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Definition 5.1 (Non-redundant compound-DMC). A compound discrete memoryless chan-
nel {WY |X,S}s∈S is non-redundant if ∀x ∈ X and ∀PX ∈ P(X ), such that PX(x) = 0, the
following holds for every s ∈ S:

WY |X,S(·|x, s) ̸=
∑
x′∈X

PX(x
′)WY |X,S(·|x′, s) (5.4)

A redundant compound-DMC {WY |X,S}s∈S can be transformed into a non-redundant
compound-DMC by expurgating all redundant symbols x ∈ X ; these are symbols x ∈ X
which violate the condition in Definition 5.1.

Definition 5.2 (Trivial compound DMC). A non-redundant compound-DMC {WY |X,S}s∈S
is trivial if

WY |X,S(y|x, s) ·WY |X,S(y|x′, s) = 0, ∀y ∈ Y ,

for every pair of non-redundant and distinct symbols x, x′ ∈ X , and for some state s ∈ S.
Note that over a trivial compound-DMC, Bob can effectively infer Alice’s input non-

trivially, for some compound state s ∈ S, upon observing the channel output; this makes
concealment impossible over any commitment protocol. Therefore, commitment cannot be
performed over a trivial compound-DMCs and their commitment capacity is zero.

5.2 Commitment capacity results

The main focus of our work in [YMJB22] has been to characterize the optimal commitment
throughput over Compound-DMCs. The following theorem states the same.

Theorem 5.1 (Compound-DMC commitment capacity). The commitment capacity of a
non-redundant Compound-DMC specified by {WY |X,S}s∈S is is

C = max
PX

min
s∈S

H(X|Y ) (5.5)

In the next two sections we discuss a detailed proof of this theorem. The proof it-
self consists of two parts: an achievability and a converse. Our achievability protocol is
inspired by [IMNW06]. In particular, we present a computationally-efficient scheme in-
volving set exchanges and universal hash functions. Our converse follows from the work
in [YMBM21] where compound-BSCs were studied (note that compound-BSCs belong to
the class of Compound-DMCs). However, we strengthen that converse by analysing commit-
ment schemes with a weaker concealment guarantee.1

We provide a computationally-efficient commitment scheme based on set exchange and
universal hash function which achieves the commitment capacity. Note that the max (over
PX) and min (over s ∈ S) cannot be interchanged in general. In fact, the alternate expression
mins∈S maxPX

H(X|Y ) is generally larger (and hence, is a weaker upper bound); in fact, for
Compound-DMCs with state-awareness, we can upgrade the commitment capacity to the
larger value. We explore this next.

1Note that showing the commitment capacity rate upper bound by analysing commitment schemes with
weaker security notions (in this case, for concealment, is a tighter rate upper bound as the bound continues
to hold when the security guarantees are made stronger.
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5.3 Converse proof

The general converse was presented in [YMBM21]. We give a quick summary of the converse
for completeness. Let us consider a sequence of protocols {Pn}n≥1. We assume that every
protocol Pn in this collection satisfies the three security criteria, viz., Pn is ϵn-sound, ϵn-
concealing and ϵn-binding for every state s ∈ S, where ϵn ≥ 0 and ϵn → 0 as n→ ∞.

Note that we strengthen our converse by proving that our rate upper bound holds even
under a weaker notion of ϵ-concealment defined below:2

Definition 5.3 (weakly ϵ-concealing). An (n,R) protocol is said to be weakly ϵ′-concealing
if for an honest Alice and under any strategy of Bob,

max
s∈S

I(C;VB|S = s) ≤ nϵ′ (5.6)

We now state a following claim which will be used in our converse.

Lemma 5.1. For every Pn, we have 1
n
H(C|X, VB) ≤ ϵ′′n, ∀s ∈ S, where ϵ′′n → 0 as n→ ∞,

.

The proof is presented in Appendix section A.1. Let us now bound the rate R. Consider
the following:

R =
1

n
H(C|VB) +

1

n
I(C;VB)

(a)

≤ 1

n
H(C|VB) + ϵ′n

(b)
=

1

n
H(C,X|Ys, KB,M)− 1

n
H(X|Ys, KB,M,C) + ϵ′n

(c)

≤ 1

n
H(C,X|Ys, KB,M) + ϵ′n

=
1

n
H(X|Ys, KB,M) +

1

n
H(C|X, VB) + ϵ′n

(d)

≤ 1

n
H(X|Ys) + ϵ′′n + ϵ′n

≤ 1

n

n∑
i=1

H(Xi|Ys,i) + ϵ′′n + ϵ′n (5.7)

Here

(a) follows from 5.6.

(b) follows from the chain rule of joint entropy and some manipulations

(c) follows from noting that conditional entropy is a non-negative quantity

(d) follows from the fact that conditioning reduces entropy and Lemma ??

2This is the ‘un-normalized’ secrecy notion which was originally studied by Wyner [Wyn75] for wiretap
channels and also called weak secrecy in literature.
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Using the standard trick of introducing an independent time-sharing random variable dis-
tributed uniformly over the set {1, n} and some manipulations, we can simplify (6.6) as
follows

R ≤
n∑

i=1

1

n
H(Xi|Ys,i) + ϵ′′n + ϵ′n

≤ H(X|Ys) + ϵ′′n + ϵ′n (5.8)

Note that (5.8) holds for every s ∈ S. Furthermore, we know that ϵ′n, ϵ
′′
n → 0 as n → ∞.

Hence, it follows that

R≤min
s∈S

H(X|Ys)

for some appropriate distribution PX on X. We now optimize the distribution on X to get
our bound:

R ≤ max
PX

min
s∈S

H(X|Ys) (5.9)

This completes our converse proof.

5.4 Achievability proof

Outline: We present a computationally efficient scheme which involves a random set exchange
between the two parties (over the noiseless two-way link) and a 2-universal hash function.
Our scheme is inspired by commitment scheme for DMCs in [IMNW06]; we robustify it so
as to be a commitment capacity-achieving over the compound-DMC.

5.4.1 Achievable scheme

The commit phase and the reveal phase are described as follows:

Commit Phase: Fix PX and set the rate R = mins∈S H(X|Y ) − β > 0, where β > 0 is
arbitrarily small constant. Alice wishes to commit to a string c ∈ [2nR] with Bob, and the
parties proceed in the following manner:

(C1) Alice generates a random vector X, generated i.i.d. with distribution PX .

(C2) Alice sends X over the C-DMC. Bob receives a corrupted version Y of the transmitted
vector X.

(C3) Based on the received vector Y = y, Bob creates a list of all candidate transmitted
vectors over the Compound-DMC3:

L(y) :=

{
x ∈ T (n)

δ (PX) : Tx,y ∈
⋃
s∈S

T (n)
δ′ (PXWY |X,S)

}
.

3Here δ > 0 is chosen appropriately small.
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(C4) Bob chooses a random subset J ⊆ {1, 2, · · · , n} consisting of nζ elements (where we
assume nζ is integer and ζ > 0); here J is chosen uniformly at random and sent to
Alice over the two-way noiseless link.

(C5) Alice computes the subset of X restricted to the indices in J ; we denote this set by
X|J := {x(i) : ∀i ∈ J } and sends it back to Bob over the noiseless link.

(C6) Alice chooses an extractor function Ext, uniformly at random from a 2-universal hash
family E := {Ext : X n → {0, 1}n(mins(H(X|Y ))−β)}, where β > 0 is a constant chosen
appropriately. Alice sends Z = c ⊕ Ext(X) (where ⊕ denotes component-wise modulo-
2 addition) and a description of Ext to Bob over the noiseless channel.

Reveal phase: All the announcements in the reveal phase are made over the public noiseless
link:

(R1) Alice reveals the pair (c̃, x̃) to Bob.

(R2) Bob accepts c̃, if the revealed pair passes following tests:

(T1) x̃ ∈ L(y)
(T2) x̃|J = x|J

(T3) c̃ = z⊕ Ext(x̃).

Else he abots the protocol and outputs a 0.

5.4.2 Analysis of security guarantees

We now present an outline of our analysis. The soundness of our protocol follows from
standard Chernoff bound. The protocol satisfies the bindingness guarantee too. To see this,
note that for a cheating Alice to pass the Bob’s typicality test (T1), she must reveal a x̃
such that the dH(x, x̃) ≤ q

√
n (for some constant q > 0) so that x̃. However, the random set

exchange (via set J and X|J ) between Alice and Bob over the noiseless link binds Alice to
her specific choice of the transmitted vector x. Any cheating attempt by revealing a different
vector x̃ is detected by Bob with high probability. This is because the set exchange makes
it essentially impossible for Alice to find a vector x̃ within the Hamming sphere (of radius
proportional to

√
n) with same randomly chosen symbols (as x) at nζ locations such that

it passes Bob’s second test (T2). For concealment, the protocol needs to detect cheating
strategy by Bob with high probability. Toward this, in the protocol, Alice uses a 2-Universal
hash function Ext and computes Ext(X); which is a nearly (uniformly) random string of
size nR bits (where R is the rate of our commitment protocol), and hence, equals the length
of Alice’s commit string. Alice uses Ext(X) as a secret key to encrypt the commit string c
using one-time pad encryption, and sends the encrypted output to Bob over the C-DMC.
This results in perfectly hiding the commit string from Bob in the commit phase thereby
guaranteeing concealment. Also, note that Bob’s third test (where Bob checks for compat-
ibility of Alice’s revealed string c̃ and x̃ via the extractor function Ext) is important as it
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helps detect a cheating Alice if she tries to behave maliciously and reveals an arbitrary c̃
such that c̃ ̸= c with an x̃ which is same as the transmitted vector x, therefore, she will be
caught. We now present a more detailed security analysis of our (n,R)-commitment protocol.

5.4.2.1 ϵ-sound

For honest Alice and Bob, the commitment protocol is ϵ-sound if:

P(T (C,X,Y, J,X|J , Z,Ext) = 1) ≥ 1− ϵ

where we assume that Alice and Bob are honest. Observe that due to Chernoff bound,
X ∈ L(Y) with high probability; this is Bob’s test (T1). Conditioned on X ∈ L(Y), note
that the outcome of Bob’s next two deterministic tests, viz. (T2) and (T3) are guaranteed
to accept the string. Hence, we can conclude that the protocol is ϵ−sound for n sufficiently
large. Further, it can be written as:

P((T1(X,Y) = 1) ∩ (T2(X, J,X|J) = 1) ∩ (T3(C,X, Z,Ext) = 1)) ≥ 1− ϵ

The above equations can be further re-written as:

P(T1(X,Y) = 1).P(T2(X, J,X|J) = 1|T1 = 1).

P(T3(C,X, Z,Ext) = 1|T1 = 1, T2 = 1) ≥ 1− ϵ

Note that the test T2 and T3 are deterministic and the revelations made by an honest
Alice will always pass both T2 and T3. Therefore P(T2(X, J,X|J) = 1|T1 = 1) = 1 and
P(T3(C,X, Z,Ext) = 1|T1 = 1, T2 = 1) = 1.
The soundness criteria can then be simplified to:

P(T1(X,Y) = 1) ≥ 1− ϵ

P(X ∈ L(y)) ≥ 1− ϵ

We analyse the complementary event {X ̸∈ L(Y)}. Using standard chernoff bounds, we
show that P (X ̸∈ L(Y)) is exponentially decreasing as n→ ∞.

5.4.2.2 ϵ-concealing

For an honest Alice and a malicious Bob, the protocol is ϵ-concealing if it satisfies the
capacity-based secrecy [DPP98], i.e., I(C;VB) ≤ ϵ. We use the privacy amplification lemma
to show that the specified protocol guarantees concealment even in the worst-case scenario
of the compound DMC, for an honest Alice. We first make the following claim without proof
which lower bounds the conditional collision entropy (thereby allowing us to use the privacy
amplification lemma).

Claim 5.1. For every Y = y,J = j and X|J = r, where j ⊆ [n], r ∈ X |J |, the conditional
collision entropy

Hc(X|Y = y,J = j,X|J = x|j) ≥ n(min
s
H(X|Ys)− ζ ′) (5.10)

where ζ ′ > 0 is a constant and ζ ′ < β.
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The proof has been discussed in Appendix section A.2. We now state the privacy ampli-
fication lemma [BBCM95]; which uses the Claim 5.1.

Lemma 5.2 (Privacy Amplification Lemma). Let PAB be an arbitrary probability distribution
for A ∈ A, B ∈ B and b be a realization of B. Suppose, the conditional collision entropy
Hc(A|B = b) is at least c. Let G be chosen uniformly at random from a 2-universal hash
family G : X n → {0, 1}r. Then,

H(G(A)|G,B = b) ≥ r − 2r−c

ln 2
(5.11)

We make the following correspondence in privacy amplification lemma: A ↔ X, G ↔ ϵ
and B ↔ Y,J ,X|J .
From Claim 5.1 and Lemma 5.2, we have:

H(ϵ(X)|Y,J ,X|J , ϵ) ≥

n(min
s
(H(X|Y ))− β)− 2n(ζ

′−β)

ln 2
(5.12)

Using the above result, we can upper bound the mutual information I(C : VB):

I(C;VB) = I(C;Y,J ,X|J , Z,Ext)

(b)
= I(C;Z|Y, J,X|J ,Ext)

(c)
= H(C|Y, J,X|J ,Ext)−H(Z|C,Y, J,X|J , ϵ)

(d)

≤ H(C)−H(Z|C,Y, J,X|J , ϵ)

(e)

≤ H(C)−H(ϵ(X)|C,Y, J,X|J , ϵ)

≤ H(C)−H(ϵ(X)|Y, J,X|J , ϵ)

(a)

≤ 2n(ζ
′−β)

ln 2
(b)

≤ ϵn

where, ϵn → 0 as n → ∞. Here (a) follows from several manipulations and the (5.12) while
b follows from noting that ζ ′ < β. Here,

(a) follows from noting that VB = {Y, J,XJ , Z,Ext}.

(b) follows from chain rule of mutual Information and noting that C is independent of
Y, J,XJ ,Ext.

(c) follows from expressing mutual information in terms of entropy.

(d) Note that conditioning reduces entropy.

(e) Given C, knowing Z is equivalent to knowing Ext(X).
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(f) follows from noting that Ext(X) ↔ Y, J,X|J ,Ext ↔ C is a markov chain.

(g) follows from (5.12).

(h) follows from noting that ζ ′ > 0 and β > 0 are chosen such that ζ ′ < β.

This completes our proof of concealment.

5.4.2.3 ϵ-binding

Let a cheating Alice transmit vector x (note that for cheating successfully, she seeks to reveal
a different vector x̃ in the reveal phase). Let Bob receive y. Given that x ∈ L(y) and using
the fact that the channel is a non-redundant compound channel, Alice needs to find a vector
x̃ which lies within the n-dimensional hamming sphere centered at x of radius

√
n such that

x̃ ∈ L(y). However, the probability to find such a x̃ which has similar nζ randomly chosen
symbols as x is vanishing in block length n. Thus, Alice cannot find an x̃ which would satisfy
Bob’s second test thereby ensuring that our protocol is ϵ-binding.

5.5 Commitment capacity of Compound-DMCs under

state awareness

In [YMJB22], we also study commitment over compound-DMCs under state-awareness at
either and/or both parties. Crucially, we assume that a state-aware party knows the com-
pound state s ∈ S exactly but cannot control it (such a control, for instance, is possible in
UNCs and channels with elasticity).

5.5.1 Case I: Only committer is state-aware

Figure 5.2: Commitment over a Compound-DMC when only committer Alice is state-aware
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Fig 5.2 depicts the problem setup when only Alice is state-aware while Bob remains
oblivious to the instantiated state. The following theorem specifies the commitment capacity
for this configuration.

Theorem 5.2. The commitment capacity of the a non-redundant compound-DMC {WY |X,S}s∈S
when only the committer Alice is state-aware is given by

C = min
s

max
PX

H(X|Ys).

5.5.2 Case II: Only receiver is state-aware

Figure 5.3: Commitment over a Compound-DMC when only receiver Bob is state-aware

Here we depict the setup where only receiver Bob is state-aware in Fig 5.3. Our result
for this configuration is stated next.

Theorem 5.3. The commitment capacity of a non-redundant compound-DMC {WY |X,S}s∈S
when only the receiver Bob is state-aware is given by

C = max
PX

min
s∈S

H(X|Y ),

and equals the commitment capacity of that C-DMC under no state-awareness at either party.

5.5.3 Case III: Both committer and receiver are state-aware

Fig 5.4 depicts the scenario when both Alice and Bob are state-aware and know the instan-
tiated state precisely.

Theorem 5.4. The commitment capacity of a non-redundant compound-DMC {WY |X,S}s∈S
when both committer Alice and receiver Bob are state-aware is given by

C = min
s∈S

max
PX

H(X|Y ),
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Figure 5.4: Commitment over a C-DMC when both committer Alice and receiver Bob are
state-aware

As pointed out in section 3.2, a Compound-DMC with two sided awareness is not differ-
ent from a DMC of some arbitrary state getting instantiated. The converse for the larger
commitment capacity expression when committer Alice is state-aware follows largely along
the lines of the converse when no party is state-aware but differs in some key aspects. The
specific differences are outlined here.

The weaker rate upper bound for the compound-DMC when committer Alice is state-
aware can be derived by appropriately tweaking the analysis. In particular, our converse for
that model will proceed along the lines of the above converse until (5.8) to get the following
rate bound:

R ≤ H(X|Ys) + ϵ′′n + ϵ′n.

Now we proceed differently by optimizing first the input distribution PX :

R ≤ max
PX

H(X|Ys) + ϵ′′n + ϵ′n.

The above rate bound is a valid, though weaker bound, and holds for every state s ∈ S.
Thus, optimizing over the choice of s ∈ S and letting n→ ∞, we get

R ≤ min
s∈S

max
PX

H(X|Ys).

One can immediately conclude that the commitment throughput over a C-DMC when
both parties are state-aware equals the commitment capacity of the worst-case DMC induced
via the state s ∈ S; here worst-case is to be understood in terms of commitment throughput.
Interestingly, from the above results, one can immediately conclude that committer-side
state-awareness (recall that state-awareness does not allow the party to control the channel
state) can sometimes help increase the commitment throughput over a compound-DMC.
On the other hand, only receiver-side state-awareness has no effect on the commitment
throughput (w.r.t. the original C-DMC under no state-awareness assumptions). However,
note that state-awareness need not always increase commitment capacity. A classic example
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is the class of compound-BSCs, where one can easily verify that both expressions, viz.,
mins∈S maxPX

H(X|Y ) and maxPX
mins∈S H(X|Y ), evaluate to the same value H(γ) which

equals the commitment capacity of the CBSC[γ, δ] [YMBM21]. As such, the commitment
capacity over a CBSC[γ, δ] is invariant to state-awareness at either committer Alice and/or
receiver Bob. In fact, more generally, one can extend this invariance of commitment capacity
under state-awareness to a wider class of appropriately degraded noisy channels [GK11]; we
leave this exploration as future work.
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Chapter 6

Commitment over RECs

In this chapter we will look at another of our main results (published in [BJMY21], [BJMY22a]),
the commitment capacity over RECs, which were defined earlier in Definition 3.9. First let us
reformulate the problem setup for commitment from figure 3.1 over reverse elastic channels.

6.1 Problem setup

Figure 6.1: The problem setup: commitment over an REC[γ, δ]

In figure 6.1, we specialise the commitment problem setup of figure 3.1 to RECs. The
problem comprises two mutually distrustful parties, the committer Alice and the receiver
Bob. Alice seeks to commit to a bit string C ∈ [2nR], where rate R > 0 is specified later.
They have access to a one-way (Alice-to-Bob) noisy REC[γ, δ], where 0 < γ < δ < 1/2
(cf. Definition 3.9). Apart from the REC[γ, δ], Alice and Bob can also communicate over
a two-way noiseless authenticated public channel. Alice makes n uses of REC[γ, δ]. Let
X denote her channel input; Bob receives its noisy version Y. Both Alice and Bob can
privately randomize. Alice’s key KA ∈ KA and Bob’s key KB ∈ KB are independent and
generated privately via random experiments; these model the randomness in Alice’s and
Bob’s actions and/or transmissions in the protocol. At any point in time, any message
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transmitted by individual parties can depend causally on the information available to them.
We have an (n,R)-commitment protocol P, following the procedure in definition 3.1. The
security guarantees for P in the context of commitment are as follows.

• ϵ-soundness: Protocol P is said to be ϵ-sound if for an honest Alice and an honest
Bob,

max
c∈[2nR]

P
(
T (c,X, VB) = 0

)
≤ ϵ. (6.1)

• ϵ-concealing: Protocol P is said to be ϵ-concealing if for an honest Alice, under any
strategy of Bob,

I(C;VB) ≤ ϵ. (6.2)

• ϵ−bindingness: Protocol P is said to be ϵ-binding if for an honest Bob, and any
strategy of Alice

max
s∈[γ,δ]

P
(
T (c̄, x̄, VB) = 1 & T (ĉ, x̂, VB) = 1

∣∣∣S = s
)
≤ ϵ (6.3)

for any two pairs (c̄, x̄), (ĉ, x̂), c̄ ̸= ĉ and x̄, x̂ ∈ {0, 1}n.

A rate R ∈ [0, 1] is said to be achievable if for every ϵ > 0, there exists for every
n sufficient large, an (n,R)-commitment protocol which is ϵ- sound, ϵ-concealing and ϵ-
binding. The supremum of all achievable rates is defined as the commitment capacity of the
REC[γ, δ], denoted by CREC[γ,δ].

6.2 Commitment capacity results

The principal contribution of our work in [BJMY21,BJMY22a] is the commitment capacity
characterization of the REC[γ, δ].

Theorem 6.1 (REC commitment capacity). The commitment capacity of the REC[γ, δ],
where 0 < γ < δ < 1/2, is

CREC = H(δ)−H (κ) , (6.4)

where κ := δ−γ
1−2γ

and δ = γ ∗ κ.

Our result proves the conjecture stated in [CDN20] on RECs. A key contribution of our
work is the matching rate upper bound (see Section 6.3). Although our converse analysis
is inspired by the approach in [CDN20] for UNCs, it has some novel differences. Crucially,
we prove our converse under complete generality, unlike the one for UNCs in [CDN20]. In
that work, the authors impose a condition where the Markov chainM ↔ Y ↔ X holds; this
is restrictive and commitment protocols in general need not satisfy such a condition (this
limitation is also pointed out in [CDN20]). Additionally, for the specific cheating strategy
of Alice, the authors leverage a degraded channel structure over the UNC; such a structure
is not available over the REC which necessitates a different approach. See Sec. 6.3 for the
detailed converse proof.
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Our achievability commitment protocol follows Damg̊ard et al.’s construction [DKS99].
In particular, our presentation is inspired by [CDN20]; however, we analyse a soundness
criterion where every commit string c ∈ [2nR] is accepted with a probability of at least
1− ϵ. This is stronger than the corresponding criterion in [CDN20] where on average (over
C ∈ [2nR]) soundness is guaranteed. 1 We refine the choice of the protocol parameters for
the given REC and analyse soundness, concealment and bindingness (see Section 6.4) of the
protocol. An interesting consequence of this work is that even when the malicious party is
adaptively allowed to set potentially different values si ∈ [γ, δ] for i ∈ [n], there is essentially
no benefit to the said party as no further commitment rate degradation is possible (this is
also seen in UNCs; see [DKS99] for instance).

6.3 Converse proof

Consider a sequence of protocols {P}n≥1. Here every protocol Pn is ϵn-sound, ϵn-concealing
and ϵn-binding, where ϵn → 0 as n→ ∞.

Alice’s ‘achievable’ strategy: We analyse the following specific active cheating strat-
egy by Alice, feasible for the REC[γ, δ]:2 If the scheme for active cheating strategies, it
would work for passive strategies as well. Alice sets the REC[γ, δ] to a BSC(s), s ∈ [γ, δ].
Correspondingly, she also sets up a ‘private’ BSC(κs), where κs := δ−s

1−2s
≥ 0; we denote

the output of this private BSC(κs) as Z (the dependence on s ∈ S is implicit). Note that
essentially the channel from Z to Y (via X) is always3 a BSC(δ). We show later that Alice’s
rate-minimizing choice s∗ equals γ which results in the tight rate bound we seek.4

Such a cheating Alice sends X over the BSC(s) to Bob, and privately generates Z by
passing X through the private channel BSC(κs); given that the pair (Z,Y) are ‘compatible’
over the BSC(δ), we have P

(
T (C,Z, VB) = 0

)
≤ ϵn, where T is Bob’s test. Let us denote

Z̃ := (Y, Z), and let Z̃ := (Y,Z).

We now state two useful lemmas used later in our analysis.

Lemma 6.1. For every Pn which is ϵn-sound and ϵn-binding, H(C|Z,Y, KB,M) ≤ nϵ′n,
where ϵ′n(ϵn) → 0 as ϵn → 0.

The proof of this lemma appears in Appendix B.1. Note that our converse holds in full
generality (see proof details later); this is quite unlike in the converse for UNCs [CDN20]
where the authors require that commitment protocols satisfy the Markov chain M ↔ Y ↔
X, thereby restricting the validity of the rate upper bound to those protocols only.

1It is known that for some problems such a change in the criterion can lead to different notions of ‘capacity’
(see, for instance, [LN98]). However, commitment capacity remains the same for both average and maximal
soundness criteria here.

2Note that fixing such a strategy gives us an upper bound on rate; in our case, this bound will prove
tight.

3This follows from noting that κs ⊗ s = κs(1− s) + (1− κ)s equals δ for every s ∈ [γ, δ].
4Another rate bound, for instance, can be obtained by assessing the case when Alice is ‘honest’, and sets

s = δ. However, it is not hard to argue that the resulting rate bound R ≤ H(δ) will only be ‘weak’.
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Let Z̃i := (Z̃1, Z̃2, · · · , Z̃i) and let Ŷi := (Yi, Yi+1, · · · , Yn). The following lemma is stated
without proof (the proof follows directly from [CK78]).

Lemma 6.2 ( [CK78]). Let W := (KB,M). Then,

I(C; Z̃|W )− I(C;Y|W ) =
n∑

i=1

[I(C; Z̃i|W, Z̃i−1, Ŷi+1)− I(C;Yi|W, Z̃i−1, Ŷi+1)]. (6.5)

We now bound the rate R of the commitment protocol Pn:

nR = H(C)

= H(C|VB) + I(C;VB)

(a)

≤ H(C|Y, KB,M) + ϵn
(b)
= H(C|Y, KB,M)−H(C|Y,Z, KB,M)

+H(C|Y,Z, KBM) + ϵ

(c)

≤ H(C|Y, KB,M)−H(C|Y,Z, KB,M) + nϵ′n + ϵn
(d)
= I(C;Y,Z|KB,M)− I(C;Y|KB,M) + nϵ′n + ϵn
(e)
= I(C; Z̃|KB,M)− I(C;Y|KB,M) + nϵ′n + ϵn

(f)

≤
n∑

i=1

[I(C; Z̃i|KB,M, Z̃i−1, Ŷ i+1)− I(C;Yi|KB,M, Z̃i−1, Ŷ i+1)] + nϵ′n + ϵn (6.6)

where we have

(a) as Pn is ϵn-concealing, and from the definition of VB.

(b) by adding and subtracting H(C|Y,Z, KB,M)

(c) from Lemma 6.1

(d) by adding and subtracting H(C|KB,M)

(e) from the definition of Z̃

(f) from Lemma 6.2.

To proceed from (6.6), let us define an independent random variable L ∼ Unif([n]). Also,
let U := (KB,M, Z̃L−1, ŶL+1, L) V := (U,C). Observe that U depends only on Z̃i, i < L,
and and Yj, j > L. Furthermore, YL is a trivially degraded version of Z̃L = (YL, ZL). Thus,
we have the following Markov chain: U ↔ V ↔ X ↔ Z̃ ↔ Y .
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We now use these facts to simplify (6.6) as follows:

R
(a)

≤
n∑

i=1

P(L = i)[I(C; Z̃L|KB,M, Z̃L−1, Ŷ L+1, L = i)

− I(C;YL|KB,M, Z̃L−1, Ŷ L+1, L = i)] + ϵ′n + ϵ̃n
(b)
= I(C; Z̃|U)− I(C;Y |U) + ϵ′n + ϵ̃n
(c)
= I(V ; Z̃|U)− I(V ;Y |U) + ϵ′n + ϵ̃n
(d)
= I(V ; Z̃)− I(U ; Z̃)− I(V ;Y )− I(U ;Y ) + ϵ′n + ϵ̃n
(e)
= I(X; Z̃)− I(X;Y )− [I(X; Z̃|V )− I(X;Y |V )]

−[I(U ; Z̃)− I(U ;Y )] + ϵ′n + ϵ̃n
(f)

≤ I(X; Z̃)− I(X;Y ) + ϵ′n + ϵ̃n (6.7)

where we have

(a) from definition of L, and letting ϵ̃n := ϵn
n
.

(b) from noting that U = (KB,M, Z̃L−1, ŶL+1, L) and letting X := XL, Y := YL and
Z̃ := Z̃L.

(c) from noting that V = (U,C).

(d) from the chain rule of mutual information

(e) from the Markov chains V ↔ X ↔ Z̃ and V ↔ X ↔ Y , and non-negativity of the
trailing two terms in brackets.

(f) from the Markov chain X ↔ Z̃ ↔ Y as Y is a degraded version of Z̃.

Note that (6.7) holds ∀s ∈ [γ, δ]. Letting n → ∞ and optimizing Alice’s choice s ∈ [γ, δ]
(recall her cheating strategy), we have

R ≤ min
s∈[γ,δ]

I(X;Y Z)− I(X;Y )

(a)

≤ max
PX

min
s∈[γ,δ]

I(X;Y Z)− I(X;Y )

(b)
= H(δ)−H

(
δ − γ

1− 2γ

)
(c)
= CREC ,

where (a) follows by optimizing the input distribution PX , and (b) follows by optimizing
the expression I(X;Y Z) − I(X;Y ) = H(X|Y ) − H(X|Y Z) which occurs at input X ∼
Bernoulli(1/2) and s∗ = γ; the optimum value equals H(δ) − H( δ−γ

1−2γ
). Finally, (c) follows

from (6.4).
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6.4 Achievability proof

Following [DKS99], our protocol utilizes two rounds of random hash exchange challenges
and a strong randomness extractor based on 2-universal hash functions; our presentation is
inspired by [CDN20]. The two rounds5 of hash challenges essentially bind Alice to her choice
in the commit phase thereby ensuring Bob’s test T can detect any cheating attempt by Alice
during the reveal phase. The strong randomness extractor extracts a secret key (note that
the leftover hash lemma [DRS04a] allows us to quantify the size of this key). This key is
then XOR-ed with the commit string c to realize a one-time pad scheme, which conceals the
committed string against Bob in the commit phase.

6.4.1 Achievabile scheme

Here are the details of our protocol. The rate R := H(δ) −H(κ) − β3, where the choice of
β3 > 0 is specified later. Let G1 := {g1 : {0, 1}n → {0, 1}n(H(κ)+β1)} be a 4n-universal hash
family, where κ := δ−γ

1−2γ
and β1 > 0 is a small enough constant. Let G2 := {g2 : {0, 1}n →

{0, 1}nβ2} be a 2−universal hash family, where β2 > 0 is a small enough constant. Let
E := {ext : {0, 1}n → {0, 1}nR} be a 2−universal hash family, where β3 > 0 is chosen such
that β3 > β1 + β2.

6 We now describe the commit and reveal phases:

Commit Phase: For Alice to commit string c ∈ [2nR], the protocol proceeds as follows:

(C1) Given c, Alice sendsX ∼ Bernoulli(1/2) independent and identically distributed (i.i.d.)
over the REC[γ, δ]; Bob receives Y.

(C2) Bob chooses a hash function G1 ∼ Unif (G1), and sends the description of G1 to Alice
over the noiseless link.

(C3) Alice computes G1(X) and sends it to Bob over the noiseless link.

(C4) Bob picks another hash function G2 ∼ Unif (G2), and sends its description to Alice over
the noiseless link.

(C5 Alice computes the hash G2(X) and sends it over the noiseless link to Bob.

(C6) Alice chooses an extractor function Ext ∼ Unif (E) and sends7 Q = c ⊕ Ext(X) and
the description of Ext to Bob over the noiseless link.

Reveal phase: Alice proceeds as follows:

(R1) Having received Y = y, Bob creates list L(y) of vectors given by:8

L(y) := {x ∈ {0, 1}n : n(δ − α1) ≤ dH(x,y) ≤ n(δ + α1)}.
5We need two rounds of hash challenge to circumvent a non-trivial rate loss that arises in the single hash

challenge due to the birthday paradox ; see [CDN20] where it is discussed in detail.
6Note that R can be made arbitrarily close to CREC .
7In the following expression, operator ⊕ denotes component-wise XOR.
8Here the parameter α1 > 0 is chosen appropriately small.
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(R2) Alice announces (c̃, x̃) to Bob over the noiseless link.

(R3) Bob accepts c̃ if all the following four conditions are satisfied: (i) x̃ ∈ L(y), (ii)
g1(x̃) = g1(x), (iii) g2(x̃) = g2(x) and (iv) c̃ = q ⊕ ext(x̃). Else, he rejects c̃ and
outputs ‘0’.

6.4.2 Analysis of security guarantees

We now analyse and prove the security guarantees in detail for the above defined (n,R)-
commitment scheme:

6.4.2.1 ϵ−sound

For our protocol to be ϵ-sound, it is sufficient to show that P (X ̸∈ L(Y)) ≤ ϵ when both
the parties, Alice and Bob, are honest; the proof of this fact follows from classic Chernoff
bounds. We skip the details.

6.4.2.2 ϵ-concealing

It is known that a positive rate commitment protocol is ϵ−concealing, where ϵ > 0 is expo-
nentially decreasing in blocklength n, if it satisfies the capacity-based secrecy (cf. [DPP98,
Def. 3.2]) and vice versa. We use a well established relation between capacity-based secrecy
and the bias-based secrecy (cf. [DPP98, Th. 4.1]) to prove that our protocol is ϵ-concealing.

To begin, we prove that our protocol satisfies bias-based secrecy by essentially proving
the perfect secrecy of the key Ext(X); here we crucially use the leftover hash lemma. Several
versions of this lemma exists (cf. [ILL89,DRS04a,HILL99] for instance); we use the following:

Lemma 6.3. Let G = {G : {0, 1}n → {0, 1}l} be a family of universal hash functions. Then,
for any hash function G chosen uniformly at random from G, and W

∥(PG(W ),G − PUl,G)∥ ≤ 1

2

√
2−H∞(W )2l

where Ul ∼ Unif
(
{0, 1}l

)
.

We then establish the following lower bound:

Lemma 6.4. For any ϵ1 > 0, ζ > 0 and n sufficiently large,

Hϵ1
∞(X|Y, G1(X), G1, G2(X), G2)

≥ n(H(δ)− ζ −H(κ)− β1 − β2)− log(ϵ−1
1 ) (6.8)

The proof appears in Appendix B.2. Next, we use Lemma 8.1 to show that the distribu-
tion of the secret key Ext(X) is statistically close to a uniform distribution thereby achieving
bias-based secrecy. Let us fix ϵ1 := 2−nα2 , where α2 > 0 is an arbitrary small constant. We
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make the following correspondence in Lemma 8.1: G ↔ Ext, W ↔ X and l ↔ nR to get
the following:

∥PExt(X),Ext − PUl,Ext∥
(a)

≤ 1

2

√
2−H∞(X)2nR

(b)

≤ 1

2

√
2−H∞(X|Y,G1(X),G1,G2(X),G2)2nR

(c)

≤ 1

2

√
2−n(H(δ)−ζ−H(κ)−β1−β2−α2)2n(H(δ)−H(κ)−β3))

=
1

2

√
2n(ζ+β1+β2+α2−β3))

(d)

≤ 2−nα3 (6.9)

where, α3 > 0 and n is sufficiently large. Here,

(a) follows directly from the leftover hash lemma (cf. Lemma 8.1)

(b) follows from the fact that conditional min-entropy bounds min-entropy.

(c) follows from (A.6) and noting that the choice of 2-universal hash function Ext is random
and uniform from the set E : {0, 1}n → {0, 1}n(H(δ)−H(κ)−β3).

(d) follows from noting that β3 is chosen such that ζ + β1 + β2 + α2 − β3 < 0; here, we
note that α2 is an arbitrarily chosen (small enough) constant, and ζ > 0 can be made
arbitrarily small for n sufficiently large. As such, a choice of β3 > β1 + β2 is sufficient.

From (8.23) and Lemma 8.1, it follows that we can extract n(H(δ) − H(κ) − β3) almost
uniformly random bits which proves the security of the secret key; this guarantees that our
commitment protocol satisfies bias-based secrecy (cf. [DPP98, Def. 3.1]). Recall from our
discussion earlier (see also [DPP98, Th. 4.1]) that bias-based secrecy under exponentially
decaying statistical distance, as in (8.23), implies capacity-based secrecy; hence, it follows
that for n sufficiently large, I(C;VB) ≤ ϵ and our protocol is ϵ-concealing.

6.4.2.3 ϵ-binding

Let us assume that a dishonest Alice sets the crossover probability of the REC[γ, δ] to
s ∈ [γ, δ]; let us define κs :=

δ−s
1−2s

. Note that κ = κγ = δ−γ
1−2γ

. Let X = x be the transmitted

bit string and Y = y be the bit string received by Bob’s over the BSC(s). Alice can cheat
successfully by confusing Bob in the reveal phase only if she can find two distinct bit strings x′

and x̃ such that (i) x′, x̃ ∈ L(y), and (ii) x′, x̃ pass the two rounds of sequential random hash
exchange challenge (w.r.t hash functions G1(·) and G2(·)). Let A denote all such candidate
vectors that appear in Bob’s list (prior to the hash challenges) that Alice can use to confuse
Bob; the following claim shows that A can be exponentially large.

Claim 6.1. Given any η > 0, for n sufficiently large

|A| ≤ 2n(H(κ)+η) (6.10)

47



6.5. KEY OBSERVATIONS

The proof appears in Appendix B.2.1. Note that, essentially, we can conclude that the
choice of s = γ is the ‘best’ choice for a cheating Alice (such a choice maximizes |A|), i.e.,
Alice can be no worse than when it fixes the REC to a BSC(γ). We will choose 0 < η < β1
later (cf. Claim 8.5).

We now show that our choice of hash functions G1(·) and G2(·) allows us to essentially
‘trim’ down this set A of ‘confusable’ vectors all the way down to none. Recall that Alice’s
choice in the commit phase is x. For a given hash value h1 ∈ {0, 1}n(H(κ)+β1) sent by Alice,
let

Ii(h1) :=

{
1 if G1(xi) = G1(x) = h1

0 otherwise.
(6.11)

Also, let

I(h1) :=

|A|∑
i=1

Ii(h1) (6.12)

denotes the total number of hash collisions with hash value h1. Then, the following holds
when 0 < η < β1:

Claim 6.2. P
(
∃h1 ∈ {0, 1}n(H(κ)+β1) : I(h1) > 8n+ 1

)
→ 0 exponentially in n as n→ ∞.

This implies that the size of the ‘confusable’ set after the first hash challenge via G1 for
any h1 is larger that 8n+ 1 with exponentially small probability (in block length n).

Conditioned on the event I(h1) < 8n+1, ∀h1, which occurs with high probability (w.h.p.),
we now analyse the size of the ‘confusable’ set after the second hash challenge via G2; let
Fh1 denote this set of ‘confusable’ vectors after the second hash challenge for a given h1. We
prove the following claim (proof in Appendix B.3.1):

Claim 6.3. For every h1 ∈ {0, 1}n(H(κ)+β1), we have for n sufficiently large

P
(
∃x ̸= x′ ∈ Fh1 : G2(x) = G2(x

′)
∣∣I(h1) ≤ 8n+ 1

)
≤ 2−n

β2
2 (6.13)

As (6.13) holds for every h1, and noting that9 β2 > 0, we now choose n large enough to
prove that our commitment protocol is ϵ−binding.

6.5 Key Observations

From our result in Theorem 6.1 and the corresponding results for ECs and UNCs (cf. [CDN20]),
we can establish that CEC[γ,δ] > CREC[γ,δ] > CUNC[γ,δ] for any specified γ, δ values. Refer
Fig. 6.2 where we plot the capacities of these unreliable channels along with the BSC(δ).

Remark 6.1 (Positive commitment throughput). Unlike UNC[γ, δ] which may have zero
commitment capacity (this occurs when δ ≥ γ ∗ γ := 2γ(1− γ), see [CDN20]), an REC[γ, δ]
always exhibits positive commitment capacity for the specified range of parameters. Note that
the same is true for an EC[γ, δ] whose capacity is CEC[γ,δ] = H(γ) > 0 [CDN20].

9Recall that β2 > 0 is a fixed parameter in our protocol.
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Figure 6.2: Variation of commitment capacities (w.r.t. γ) for different channels. Curves are
presented for different values of δ ∈ (0, 1/2).

The following is a key takeaway from this work: commitment throughput over RECs is
strictly lower than that over ECs (under identical γ, δ parameters) when parties can malicious
alter the channel characteristics. This fact reveals an interesting asymmetry in commitment
over such unreliable channels with one-sided elasticity, i.e., channels which afford elastic-
ity (i.e., capability to alter the channel) to exactly one of the cheating parties exclusively.
Essentially, a cheating committer Alice always degrades the commitment throughput more
than a cheating receiver Bob. This is in stark contrast to the symmetric scenario under
honest-but-curious parties which lack malicious channel control; the REC (as well as EC)
essentially defaults to a classic BSC(δ) here. For such honest-but-curious adversaries, RECs
and ECs offer identical commitment throughput.

Figure 6.3 illustrates the asymmetry in the commitment capacity for the RECs and the
ECs more succinctly; in figure 6.3 we present the joint ‘equal-capacity’ contours for RECs
and ECs. As can be seen in Fig. 6.3, for a fixed δ ∈ (0, 1/2), a cheating receiver in EC[γ, δ]
requires considerably ‘larger’ receiver-side elasticity, characterized by a lower γ (the axes
plot a normalized value of γ w.r.t. δ), to effect the same degradation of the commitment
throughput than a cheating committer in an REC[γ, δ]. Furthermore, as δ increases, one
can observe that the skew in the asymmetry, which essentially characterizes the committer-
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receiver ‘mismatch’ in ‘elastic-capabilities’, is more pronounced.

Seen from another perspective, for a fixed δ ∈ (0, 1/2), the gap in the commitment
capacity Ωδ(γ) := CEC[γ,δ]−CREC[γ,δ] is strictly positive (note that 0 < γ < δ < 1/2), though
it is not a constant (see Fig. 6.2). Furthermore, this gap Ωδ(·) increases as δ increases in
the range (0, 1/2); it can be shown that Ωδ(γ) is concave in γ (for fixed δ), and Ωδ(γ) is

maximized when γ ⊗ γ = δ, i.e., for a unique optimizer γ∗(δ) = 1−
√
1−2δ
2

. It is pertinent to
note that γ∗(δ) is exactly the value for which the corresponding UNC[γ∗, δ] has zero capacity.

Figure 6.3: The EC[γ, δ] versus REC[γ, δ] commitment capacity contour plotted when those
capacities are identical. Curves are presented for different values of δ ∈ (0, 1/2).
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Chapter 7

Commitment over Asymmetric UNCs

Here we study commitment over a more general unreliable channel model that encompasses
all the works on elastic channels, reverse elastic channels and unfair noisy channels.

7.1 Problem setup

Figure 7.1: The problem setup: commitment over a Asymmetric-UNC[γ2, δ2]

The commitment problem over an Asymmetric-UNC[γ, γA, γB, δ]] is depicted in Fig. 8.1.
Here two mutually distrustful parties, the committer Alice and the receiver Bob seek to
realize commitment over Alice’s random bit string C ∈ [2nR], where R > 0 is specified
later. Alice and Bob have access to a one-way (from Alice to Bob) noisy channel, viz.,
a Asymmetric-UNC[γ, γA, γB, δ]], where 0 < γA, γB ≤ γ < δ < 1/2 (cf. Definition 3.12).
Apart from the Asymmetric-UNC[γ, γA, γB, δ]], Alice and Bob can also communicate over
a two-way noiseless, authenticated and public channel. Alice makes n uses of Asymmetric-
UNC[γ, γA, γB, δ]. LetX denote her transmission on the channel. Bob receives a noisy version
Y of Alice’s transmission X. We assume that both Alice and Bob can privately randomize.
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We denote by KA ∈ KA and KB ∈ KB, Alice’s and Bob’s random keys respectively. These
are independent and privately generated keys. Note that the keys essentially represent the
randomness in Alice’s and Bob’s actions and/or transmissions. At any point in time, any
message transmitted by individual parties can depend causally on the information available to
them. Say P is an (n,R)−commitment protocol (from definition 3.1) over an Asymmetric-
UNC[γ, γA, γB, δ]. The security features corresponding are

• ϵ-soundness: Protocol P is said to be ϵ-sound if for an honest Alice and an honest
Bob,

max
s∈[γ,δ]

max
c∈[2nR]

P
(
T (c,X, VB) = 0

∣∣∣S = s
)
≤ ϵ. (7.1)

• ϵ-concealing: Protocol P is said to be ϵ-concealing if for an honest Alice, under any
strategy of Bob,

max
s∈[γB ,δ]

I(C;VB

∣∣∣S = s) ≤ ϵ. (7.2)

• ϵ−bindingness: Protocol P is said to be ϵ-binding if for an honest Bob, and any
strategy of Alice

max
s∈[γA,δ]

P
(
T (c̄, x̄, VB) = 1 & T (ĉ, x̂, VB) = 1

∣∣∣S = s
)
≤ ϵ (7.3)

for any two pairs (c̄, x̄), (ĉ, x̂), c̄ ̸= ĉ and x̄, x̂ ∈ {0, 1}n.

A rate R ∈ [0, 1] is said to be achievable if for every ϵ > 0, there exists for every n sufficient
large, an (n,R)-commitment protocol which is ϵ- sound, ϵ-concealing and ϵ-binding.

7.2 Impossibility and achievability results

We find that commitment is not possible over Asymmetric-UNCs of certain parameters.

Theorem 7.1 (Impossibility over Asymmetric-UNCs). For a Asymmetric-UNC[γ, γA, γB, δ],
the commitment capacity CA−UNC = 0 if δ ≥ γA ∗ γB.

This result conclusively identifies sufficient conditions for impossibility of even single-bit
commitment over Asymmetric-UNCs. See Section 7.3 for the proof.

Remark 7.1. Our converse in inspired in spirit by the one for binary UNCs in [DKS99]. A
key fact used in the converse is the classic result of impossibility of commitment over noise-
less links (even when parties can privately randomize). Our proof of the converse continues
to use this same approach. A crucial part of our proof involves analysing a ‘more restric-
tive’ channel model called the Passive AUNC[γA, γB, δ] with identical parameters as in the
Asymmetric-UNC[γ, γA, γB, δ] (see Sec 7.3). We show via a sequence of reductions that Pas-
sive AUNC[γA, γB, δ] can be simulated noiselessly, and thus, should preclude commitment.
We then leverage this result to show that, as a consequence, commitment is impossible over
a Asymmetric-UNC[γ, γA, γB, δ] .
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Theorem 7.2 (Achievability result over Asymmetric-UNCs). For Asymmetric-UNC[γ, γA, γB, δ]
with δ < γA ∗ γB, the commitment capacity CAUNC ≥ H2(

δ−γA
1−2γA

)

The above inequality evaluates with equality for UNCs, ECs and RECs. Both the results
also fully characterise the possibility regime of commitment as the Capacity lowerbound
of theorem 7.2 just reaches zero on the boundary of impossibility regime of theorem 7.1,
δ = γA ∗ γB. That said, a complete information theoretic rate upperbound still remains an
open problem.

7.3 Impossibility proof

Claim 7.1. No ϵ1−sound, ϵ2−concealing, ϵ3−binding k−bit commitment scheme is possible
over noiseless channels for

ϵ2 < k(1− ϵ1 − 2kϵ3)− 2
√
ϵ1 + 2kϵ3. (7.4)

The proof is in Appendix C.1. Let us now define a channel called Passive-AUNC, which
is a slightly modified version of the AUNC channel which we studied earlier.

Definition 7.1 (Passive-AUNC). A Passive AUNC[γA, γB, δ] (γA, γB ≤ δ) behaves like a
regular BSC(δ) when both the users are honest. However a cheating Alice or Bob can get
extra side information that can reduce the noise to γA or γB respectively from their point of
view.

We will first show that commitment is impossible over Passive-AUNC over some param-
eter regimes. It follows from here that commitment is not possible over Asymmetric-UNCs
as well. Towards the first part we show this claim

Claim 7.2. A Passive AUNC[γA, γB, δ] can be realised noiselessly when δ ≥ γA ⊛ γB.

Proof. We present here a protocol SimAUNC that for given γA, γB and δ, can realise the
functionality of n uses of a Passive AUNC[γA, γB, δ] for any given channel input x ∈ [0, 1]n.
SimAUNC{γA, γB, δ}(x){
Define θ s.t. γA ⊛ γB ⊛ θ = δ
Alice passes x through a local BSC(γB) to get x1

Alice passes x1 through a local BSC(θ) to get x2

Alice sends x1, x2 to Bob noiselessly
Bob passes x2 through a local BSC(γA) to get x∗

Ask Alice, Bob to forget x1, x2

Return the resulting views VA and VB

}
Here x,x1,x2,x

∗ ∈ [0, 1]n. To understand how SimAUNC correctly realises the functionality
of a Passive AUNC, let us analyse over a case by case basis. It is to note here that while
honest parties faithfully forget the values of x1 and x2, passively cheating parties continue to
remember them, but not affecting the protocol in any other way. An actively cheating party
on the other hand may change the variables where ever possible involved in the protocol to
his/her advantage.
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Figure 7.2: Channel structure in SimAUNC{γA, γB, δ}(x) and how it simulates the behaviour
of a Passive-AUNC[γA, γB, δ] with input x.

(a) when Alice is honest and Bob is honest: Here, Alice and Bob follow all the steps in
SimUNC exactly. For input x, at the end of SimUNC, Alice’s and Bob’s views are VA = (x),
VB = (x∗) respectively. It follows from figure 7.2 that the channel between x and x∗ is
a BSCδ. This exactly corresponds to the channel behaviour when an honest Alice sends
over x through Passive AUNC[γA, γB, δ] to an honest Bob. (see Def. 7.1).

(b) when Alice is passively cheating and Bob is honest: A passively cheating Alice
remembers the values of x1 and x2 in addition to that of x, resulting in VA = (x,x1,x2)
and VB = (x∗). From figure 7.2, the extra knowledge of x2 brings down Alice’s uncer-
tainty of x∗ to BSC(γA) in what is otherwise a BSC(δ) as is observed from an honest
Bob’s perspective. This corresponds to the behaviour of a Passive AUNC[γA, γB, δ] whose
channel input is x.

(c) when Alice is actively cheating and Bob is honest: Consider a cheating behaviour
of Alice who, for input string x, modifies the values of x1 and x2 to say y1 and y′

2

respectively, before sending them over to Bob. This results in views VA = (x,y1,y2)
and VB = (y∗). This corresponds to the behaviour of a Passive AUNC[γA, γB, δ] whose
channel input is changed by actively cheating Alice to some y, s.t. y, y2 are γA ⊛ θ
typical i.e., dH(y,y2) ∈ [n(γA ⊛ θ)− ν, n(γA ⊛ θ) + ν] for small enough ν.

(d) when Alice is honest and Bob is passively cheating: The analysis is similar to
the second case, except that here a cheating Bob passively cheats to gain a view of
VB = (x1,x2,x

∗) while Alice’s view is simply VA = (x). This results in Bob bringing
down his noise to γB flipping error, while Alice still observes BSC(δ).

(e) when Alice is honest and Bob is actively cheating: In SimAUNC Bob doesn’t have
any active cheating opportunity because there are no parts of the protocol which he can
actively change to modify the outcome. The same is true over Passive AUNCs as well.
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We do not analyse the behaviour of SimUNC when both the agents are cheating, because the
behaviour of Passive AUNC is not defined for this case. Moreover, this is not relevant in the
context of commitment as there are no security guarantees associated with this case.

Remark 7.2. From claims 7.1 and ?? we can conclude that there exists no ϵ−sound,
ϵ−concealing, and ϵ−binding k−bit commitment scheme over a Passive AUNC[γA, γB, δ]
for δ ≥ γA ⊛ γB.

Claim 7.3. If for a given ϵ, there exists no ϵ−sound, ϵ−concealing, ϵ−binding commit-
ment protocol over a Passive-AUNC[γA, γB, δ], then there exists no such protocol over an
Asymmetric-UNC[γA, γB, δ].

Proof. We will prove the contrapositive of this statement. We take a commitment protocol
P that is ϵ−sound, ϵ−concealing, ϵ−binding over a Asymmetric-UNC[γA, γB, δ]. Then we
show that P satisfies the security guarantees over Passive-AUNC[γA, γB, δ] as well. Let c,
x, y(s) VA(s), VB(s) be the commit string, sent codeword, received codeword, and view
variables respectively as defined in Definition 3.1, as functions of the channel state s that
is instantiated. Let us define new view variables V ′

A and V ′
B when the same protocol P

is carried out over a Passive-AUNC[γA, γB, δ]. We have from the soundness criterion of
Definition 3.2 of P, that when both Alice and Bob are honest,

P(T (c,x, VB(s)) ̸= 1) ≤ ϵ ∀s ∈ [γ, δ] (7.5)

⇒ (T (c,x, V ′
B) ̸= 1) ≤ ϵ (7.6)

This is true because for the honest-honest case, V ′
B = (y(s = δ),M) evaluates to a special

case of VB(s = δ). From the concealment criterion of definition 3.3, for an honest Alice,

I(C, VB(s)) ≤ ϵ ∀s ∈ [γB, δ] (7.7)

⇒ I(C, V ′
B) ≤ ϵ (7.8)

To prove the correctness of above, let’s look at the view V ′
B when Bob is honest, and when

he is cheating separately. When he is honest V ′
B simply evaluates to VB(s = δ) as above.

Now when Bob is cheating, consider a case when Alice send x over Passive-AUNC and Bob
receives some z as the output, but is also able to tap into the channel to get an intermediary
output y that equates to y(s = γB). We have V ′

B = (y, z,M). Because of the Markov
chain dependence x − y − z, I(C, V ′

B) = I(C, (y, z,M)) = I(C, (y,M)) which is same as
I(C, VB(s)) for s = γB from (7.7). From the bindingness criterion of Definition ??, for an
honest Bob, under any cheating strategy of Alice

P (T (c1,x1, VB(s)) = 1 & T (c2,x2, VB(s)) = 1) ≤ ϵ

∀c1, c2 ∈ C, c1 ̸= c2,x1,x2 ∈ X n, s ∈ [γA,δ] (7.9)

⇒ P (T (c1,x
′
1, V

′
B) = 1 & T (c2,x

′
2, V

′
B) = 1) ≤ ϵ

∀c1, c2 ∈ C, c1 ̸= c2,x1,x2 ∈X n (7.10)

Observing in a case by case basis over Passive Gaussian UNC we have V ′
B = (y(s = δ,M))

when Alice is honest and V ′
B = (y(s = γA,M)) when Alice is cheating. They evaluate
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to VB(s) for s = δ and s = γA respectively. So we can substitute them in (7.9) to get
(7.10). Since T and VB anyways do not depend on V ′

A, (8.14) holds for any behaviour of
Alice. From (7.6), (7.8) and (7.10), protocol P is ϵ−sound, ϵ−concealing, ϵ−binding over a
Passive Gaussian UNC[γ2, δ2] also.

From Remark 7.2 and claim 7.3, we can say that for small enough ϵ i.e., ϵ less than
k2/(1 + k + k2k + 2

k+1
2 )2), and for δ2 > 2γ2, there exists no k−bit commitment protocol over

a Asymmetric-UNC[γ, γA, γB, δ] (over any number of uses of the channel) that is ϵ−sound,
ϵ−concealing, ϵ−binding i.e., there exists no achievable protocol.

7.4 Achievabilty idea

Our achievability scheme is inspired by the work of Damg̊ard et al. [DKS99]. It involves
the use of two rounds of random hash exchange challenge from Bob to Alice, and a strong
randomness extractor based on 2-Universal hash function. The two rounds of hash challenge
binds Alice and therefore prevents her from cheating successfully. The first hash challenge
brings down the number of confusable bit strings (x′) that Alice can use to confuse Bob in
the reveal phase from exponential to polynomial many in block-length n, the second hash
exchange further brings down the number of such bit strings to 1. The strong randomness
extractor is used to extract the left over randomness via a secret key (note that the gener-
alized left over hash lemma [DRS04b] allows us to quantify the size of such a key) of length
same as that of the committed bit string. This key is then XOR-ed with the commit string c,
which results in a one-time pad and ensures the perfect secrecy of the committed bit string
(c) against Bob in the commit phase.

Let G1 be a 4n-universal hash family such that G1 := {g1 : {0, 1}n → {0, 1}n(H(κA)+β1)},
where κA := δ−γA

1−2γA
and β1 > 0 is a small enough constant. Further, let G2 be a 2−universal

hash family such that G2 := {g2 : {0, 1}n → {0, 1}nβ2}, where β2 > 0 is a small enough con-
stant. Let E be a 2−universal hash family such that E := {ext : {0, 1}n → {0, 1}n(H(γB)−H(κA)−β3)},
where β3 > 0 is a constant chosen such that β3 > β1 + β2.
We now describe the commit phase and the reveal phase as follows:

• Commit Phase: Alice wants to commit to a bit string c ∈ [2nR]. The users proceed as
follows in the commit phase:

(C1). Given the commit string c, Alice sends X ∼ Bernoulli(1/2) independent and identi-
cally distributed (i.i.d.) over the Asymmetric-UNC[γ, γA, γB, δ]. Bob receives the corrupted
string Y.

(C2). Having received Y = y, Bob determines the list L(y) of bit strings given by:1

L(y) := {x ∈ {0, 1}n : n(γ − α1) ≤ dH(x,y) ≤ n(δ + α1)}.
1Here the parameter α1 > 0 is chosen appropriately small.
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(C3). Bob selects a 4n−universal hash function G1 ∼ Unif (G1), and sends the description
of G1 to Alice over the two-way noiseless channel.

(C4). Alice computes the hash value G1(X) and sends it to Bob over the two-way noiseless
channel.

(C5). Now, Bob chooses a 2−universal hash function G2 ∼ Unif (G2), and sends its descrip-
tion to Alice over the noiseless channel.

(C6). Alice computes the hash value G2(X) and sends it over the two-way noiseless channel
to Bob.

(C7). Alice chooses a 2−universal hash function Ext ∼ Unif (E) and sends Q = c⊕EXT(X)
and the description of EXT to Bob over the noiseless link. 2

• Reveal phase: The users proceed in the following manner:

(R1). Alice announces (c̃, x̃) to Bob over the two-way noiseless channel.

(R2). Bob accepts c̃ if all the following four tests result an accept i.e., (T = 1):

T1: (i) x̃ ∈ L(y),
T2: (ii) g1(x̃) = g1(x),
T3: (iii) g2(x̃) = g2(x),
T4: (iv) c̃ = q ⊕ ext(x̃).

Otherwise, Bob rejects the revealed bit string c̃ and outputs ‘0’.

We skip the analysis of the proofs.

7.4.1 Note on Asymmetric UNCs over other regimes

The rate expression we achieved for Asymmetric-UNCs is highly dependent on the assump-
tion that γA, γB < γ. Over other parameter regimes, the condition for concealment and
bindingness guarantees dictate the size of hash functions and randomness extractors that we
choose. Accordingly the rate differs. The exact values of the rates of different protocols that
are possible are H2(γ), H2(γB), H2(γB−κA), H2(γ−κ) ( κ = δ−γ

1−2γ
, κA = δ−γA

1−2γA
). At any time

it is the protocol with rate corresponding to the minimum of these values, that is achievable.
In the above case, γA, γB < γ, there is clearly only one minima H2(γB − κA). Moreover, the
achievable region of this rate and the impossibility region of theorem 7.1 exactly span the
entire space. But if one of the other terms mentioned turns out to be the minimum rate,
there would still remain a gap in the analysis of our impossibility and achievability proofs.

2In the following expression, operator ⊕ denotes component-wise XOR.
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Chapter 8

Commitment over Gaussian UNCs

In this chapter we present the last of our principal results. We study commitment on an
unreliable variant of continuous AWGN channels, through Gaussian-UNCs [BJMY22b]. We
find an impossibility regime for commitment over Gaussian-UNCs. Over the possibility
regime, we present positive throughput schemes for different power constraint values. We
start off by discussing the problem setup.

8.1 Problem setup

Figure 8.1: The problem setup: commitment over a Gaussian UNC[γ2, δ2]

We build upon the problem setup from figure 3.1 for over Gaussian-UNCs. Markedly,
we would be characterising power constraints on the channel’s input alphabet. Figure 8.1
specialises the setup. In our problem, two mutually distrustful parties, committer Alice and
receiver Bob employ a Gaussian-UNC[γ2, δ2] to realize commitment over a random string
C ∈ [2nR] available to Alice (we specify R > 0 later). Alice and Bob have access to a one-way
Gaussian-UNC[γ2, δ2] with elasticity E at both Alice and Bob (henceforth only referred to as
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elasticity) where E := δ2−γ2, for 0 < γ ≤ δ, and γ, δ ∈ R+.1 Separately, as is common in such
cryptographic primitives, we also assume that Alice and Bob can interact over a two-way link
that is noiseless and where the interaction is public and fully authenticates the transmitting
party. To commit to her random string C, Alice uses the Gaussian-UNC[γ2, δ2] channel n
times and transmits over it her encrypted data X = (X1, X2, · · · , Xn) ∈ Rn; Bob receives a
noisy version Y ∈ Rn of Alice’s transmission X. Alice has an input power constraint P > 0,
i.e., Alice can only transmit vectors X ∈ S(P ), where S(P ) := {x ∈ Rn : ∥x∥ ≤

√
nP},

thus yielding a signal to elasticity ratio (SER) defined as SER:= P
E
. We allow private ran-

domization at both Alice and Bob via their respective keys KA ∈ KA and KB ∈ KB. At
any point in time, Alice and Bob can also exchange messages over the public, noiseless link;
let M denote the entire collection of messages exchanged. We call M the transcript of the
protocol. It is important to note that we assume that any point in time during the protocol,
the transmissions of Alice and/or Bob can depend causally on the information previously
available to them.

An (n,R)−commitment protocol P from definition 3.1 over Gaussian-UNCs is studied
for the following characteristics.

• ϵ-soundness: A protocol P is ϵ−sound if, for an honest Alice and an honest Bob,

P (T (C,X, VB) ̸= 1) ≤ ϵ. (8.1)

• ϵ-concealing: A protocol P is ϵ−concealing if, for an honest Alice and under any
strategy of Bob,

I(C;VB) ≤ ϵ. (8.2)

• ϵ−bindingness: A protocol P is ϵ−binding if, for an honest Bob and under any
strategy of Alice,

P
(
T (c̄, x̄, VB) = 1 & T (ĉ, x̂, VB) = 1) ≤ ϵ (8.3)

for any two pairs (c̄, x̄), (ĉ, x̂), c̄ ̸= ĉ, and x̄, x̂ ∈ S(P ).

A rate R is said to be achievable if for every ϵ > 0 there exists for every n ∈ N sufficiently
large a protocol P such that P is ϵ−sound, ϵ−concealing and ϵ−binding. The supremum of
all achievable rates is called the commitment capacity CGUNC of the Gaussian-UNC[γ2, δ2].

8.2 Impossibility and achievability results

We first present an impossibility result.

1We require the strict inequality γ > 0 as otherwise a malicious Alice can force the Gaussian-UNC[γ2, δ2]
always to an AWGN channel with variance 0, i.e., a noiseless channel. It is well known that a noiseless
channel precludes commitment [Blu83].

59



8.2. IMPOSSIBILITY AND ACHIEVABILITY RESULTS

Theorem 8.1 (Impossibility over Gaussian-UNCs). For a Gaussian UNC[γ2, δ2], the com-
mitment capacity C = 0 if δ2 ≥ 2γ2.

This result conclusively identifies sufficient conditions for impossibility of even single-bit
commitment over Gaussian UNCs. See Section 8.3 for the proof.

Remark 8.1. Our converse in inspired in spirit by the one for binary UNCs in [DKS99]. A
key fact used in the converse is the classic result of impossibility of commitment over noiseless
links (even when parties can privately randomize). Our proof of the converse continues to
use this same approach. A crucial part of our proof involves analysing a ‘more restrictive’
channel model called the Passive-Gaussian UNC[γ2,δ2] with identical parameters as in the
Gaussian UNC[γ2,δ2] (see Sec 8.3). We show via a sequence of reductions that Passive-
Gaussian UNC[γ2,δ2] can be simulated noiselessly, and thus, should preclude commitment.
We then leverage this result to show that, as a consequence, commitment is impossible over
a Gaussian UNC[γ2,δ2] .

An interesting aspect of our impossibility result is that Alice’s power constraint P plays
no role; commitment is seen to be impossible if the elasticity E = δ2 − γ2 is ‘large enough’,
i.e., E ≥ γ2. This result is similar in ‘flavour’ to that over the binary UNCs (cf. [DKS99]
for details).

Having understood the impossibility regime (when δ2 ≥ 2γ2), we now flip the question
and seek to explore positive-rate commitment schemes. Interestingly, unlike our impossibility
result, Alice’s input constraint P plays a crucial role. Furthermore, we notice that there is a
stark difference in our achievability results when P > E and when P ≤ E. This motivates us
to define the notion of signal-to-elasticity ratio (SER), where SER := P/E for a Gaussian
UNC[γ2, δ2]. We now state our first result. Note that all the following theorems are stated
without proof here (see extended draft for proof details).

Theorem 8.2. Let P > E and hence, the SER > 1. Then, positive-rate commitment is
possible, i.e., C > 0 if:

δ2 ≤
(
1 +

P

P + γ2

)
γ2. (8.4)

Furthermore, C is lower bounded by :

CG−UNC ≥ 1

2
log

(
P

δ2 − γ2

)
− 1

2
log

(
1 +

P

γ2

)
. (8.5)

We present only a brief overview of our achievability protocol. See the extended draft
for details.

Remark 8.2. The proof of this theorem uses a novel approach but crucially borrows ideas
both from the protocol of Crepeau et al. [DKS99,CDN20] for binary UNCs as well as that of
Nascimento et al. [NBSI08] for classic AWGN channels. The ‘skeleton’ of our protocol uses
an error correcting code with certain minimum distance guarantee (similar to [NBSI08]).
However, to handle adversaries who may benefit from the channel elasticity available, we
‘robustify’ our protocol by using an appropriate hash function challenge mechanism inspired
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by the protocols in [DKS99,CDN20]. Note that this is not required in classic AWGN chan-
nels which lack elasticity. The specific choice of the protocol parameters (viz., the error
correcting code rate, the range of the universal hash functions and the randomness extrac-
tors, etc..) needs careful consideration. While the soundness of our protocol follows from
Chernoff bounding, the concealment and bindingness are more tricky. For concealment, we
utilize a well known equivalence between the so-called bias-based security and capacity-based
security [DPP98]; here, the leftover hash lemma [NBSI08] is crucially used. The bindingness
analysis follows from the hash function challenges Bob offers to Alice; careful concentration
bounds need to be established. An important part in this analysis requires us to get a good
bound on the number of ‘confusable’ codewords that a cheating Alice may seek to reveal.
Here we use results on spherical codes to get the appropriate bound on the cardinality of the
‘confusable’ codewords.

The above result holds for the regime when the SER > 1. Interestingly, for extremely
large values of SER, the ‘possibility’ bound ‘shifts’ (as a function of P ) towards the impos-
sibility bound of Theorem 8.1. In fact, in the limit P → ∞, the two bounds meet exactly,
thereby allowing us to characterize precisely the positive commitment rate, i.e., C > 0,
threshold.

Theorem 8.3. Fix γ2, δ2 <∞ and let P → ∞. Then commitment is possible if and only if
δ2 ≤ 2γ2.

The proof of this result simply follows from Theorem 8.1 and by taking the limit P → ∞
for the threshold in (8.4) (for fixed γ2, δ2) from Theorem 8.2. Having presented results for
SER > 1, we now present achievability results for the regime where 0 < SER < 1. Note
that commitment is impossible when SER = 0.

Theorem 8.4. Let P ≤ E and hence, the SER ≤ 1. Then, positive-rate commitment is
possible if the following holds:

δ2 ≤
(
1 +

P

P + γ2

)
γ̃2. (8.6)

where γ̃2 := δ2−P. Furthermore, the commitment capacity C is lower bounded by the following
expression:

CG−UNC ≥ 1

2
log

(
P

δ2 − γ̃2

)
− 1

2
log

(
1 +

P

γ2

)
. (8.7)

Remark 8.3. The condition for positive rate commitment for this scenario is different from
that in Theorem 8.2. A low SER where Alice’s power P is no larger than the channel
elasticity allows malicious parties significant ascendance. However, this ascendance is not
symmetric. Thus, while Bob can benefit from effecting an AWGN channel with variance γ2

(when malicious) such is not the case for Alice. In fact, in her case, it is seen that the most
effective use of channel elasticity is to induce an AWGN channel with variance γ̃2 > γ2.
This comes about from a malicious Alice’s interest in maximizing her ‘confusable’ set of
codewords. For details, refer the extended draft.
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An important take away from the achievability results for both the scenarios, viz., when
SER > 1 and when SER ≤ 1, is that the ‘finiteness’ of commitment capacity of Gaussian
UNCs is owing to the underlying channel elasticity E. This fact is particularly stark when,
for fixed P > 0, one allows the channel elasticity to vanish, i.e., E = 0. In this case, the
commitment capacity lower bound (see Theorem 8.2) suggests that commitment rate is
infinite, which is exactly what is known for classical AWGN channels that exhibit E = 0.
We capture this alternate perspective on the infinite commitment rate of classical AWGN
channels in the following corollary.

Corollary 8.1. For a fixed P > 0, the commitment capacity of a Gaussian UNC with
vanishing channel elasticity E approaches infinity.

8.3 Impossibility proof

We first start by showing that commitment is impossible over noiseless channels in Claim
8.1. We then define a channel called ‘Passive-Gaussian UNC[γ2, δ2]’, which we show can
be simulated noiselessly over the regime δ2 ≥ 2γ2 through claim 8.2. This implies that
commitment can’t be realised over such Passive-Gaussian UNCs. We build upon this result
and show in claim 8.3 that it further implies that commitment is not possible over Gaussian
UNCs as well. This completes our proof. It is to note that, in this section we analyse
seperately the two different cheating behaviours of users - ‘active’ and ‘passive’(discussed
earlier in section 3.3).

Claim 8.1. No ϵ1−sound, ϵ2−concealing, ϵ3−binding k−bit commitment scheme is possible
over noiseless channels for

ϵ2 < k(1− ϵ1 − 2kϵ3)− 2
√
ϵ1 + 2kϵ3. (8.8)

The proof is included in Appendix C.1. This claim shows that commitment is impossible
with vanishing soundness, concealment and bindingness parameters over a noiseless channel.
Let us look at a modified version of the Gaussian-UNCs.

Definition 8.1 (Passive-Gaussian UNC). A Passive-Gaussian UNC[γ2, δ2] is an AWGN(δ2)
channel when both the users are honest. However, a cheating party can get some extra side
information which can bring down the noise variance to γ2 ≤ δ2 from his/her point of view.

Crucially since there is no chance of channel control, a passively cheating party and
an ‘honest but curious’ party behave alike over Passive-GaussianUNC. By proving that
commitment is impossible over this channel, we show that it follows that commitment is
impossible over Gaussian UNCs as well. Towards the first part, we first claim this result.

Claim 8.2. A Passive-Gaussian UNC[γ2, δ2] can be realised noiselessly when δ2 ≥ 2γ2.

Proof. We present here a protocol SimGUNC that for given γ and δ, can realise the function-
ality of n uses of a Passive-Gaussian UNC[γ2, δ2] for any given channel input x ∈ Rn.
SimGUNC{γ2, δ2}(x){
Define θ :=

√
δ2 − 2γ2
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Alice passes x through a local AWGN(γ2) to get x1

Alice passes x1 through a local AWGN(θ2) to get x2

Alice sends x1, x2 to Bob noiselessly
Bob passes x2 through a local AWGN(γ2) to get x∗

Ask Alice, Bob to forget x1, x2

Return the resulting views VA and VB

}
SimGUNC here involves only noiseless interactions between Alice and Bob. Here x,x1,x2,x

∗ ∈
Rn. To understand how SimGUNC correctly realises the functionality of a Passive-Gaussian
UNC, let us analyse over a case by case basis. It is to note here that while honest parties
faithfully forget the values of x1 and x2, passively cheating parties continue to remember
them, but not affecting the protocol in any other way. An actively cheating party on the
other hand may change the variables where ever possible involved in the protocol to his/her
advantage. A crucial fact used here is that addition of two independent zero mean gaussian
variables is another zero mean gaussian with variance that is the sum of the variances of the
addends.

(a) when Alice is honest and Bob is honest: Here, Alice and Bob follow all the steps
in SimGUNC exactly. For input x, at the end of SimGUNC, Alice’s and Bob’s views are
VA = (x), VB = (x∗) respectively. It follows from Fig. 8.2 that the channel between x
and x∗ is an AWGN(δ2). This exactly corresponds to the channel behaviour when an
honest Alice sends over x through Passive-Gaussian UNC[γ2, δ2] to an honest Bob. (see
defnition 8.1).

(b) when Alice is passively cheating and Bob is honest: A passively cheating Alice
remembers the values of x1 and x2 in addition to that of x, resulting in VA = (x,x1,x2)
and VB = (x∗). From Fig 8.2, the extra knowledge of x2 brings down Alice’s uncertainty
of x∗ to AWGN(γ2) in what is otherwise an AWGN(δ2) as is observed from an honest
Bob’s perspective. This corresponds to the behaviour of a Passive AUNC[γ2, δ2] whose
channel input is x.

(c) when Alice is actively cheating and Bob is honest: Consider a cheating behaviour
of Alice who, for input string x, modifies the values of x1 and x2 to say y1 and y′

2

respectively, before sending them over to Bob. This results in views VA = (x,y1,y2)
and VB = (y∗). This corresponds to the behaviour of a Passive-Gaussian UNC[γA, γB, δ]
whose channel input is changed by the actively cheating Alice to some y ∈ Rn, s.t. y, y2

are γ2 + θ2 typical i.e., ||y,y2|| ∈ [
√
n(γ2 + θ2)− ν,

√
n(γ2 + θ2) + ν] for small enough

ν. In lose terms y, y2 are separated by an AWGN(γ2 + θ2).

(d) when Alice is honest and Bob is passively cheating: The analysis is similar to
the second case, except that here a cheating Bob passively cheats to gain a view of
VB = (x1,x2,x

∗) while Alice’s view is simply VA = (x). This results in Bob bringing
down his noise to AWGN(γ2), while Alice still observes an AWGN(δ2).

(e) when Alice is honest and Bob is actively cheating: In SimGUNC Bob doesn’t have
any active cheating opportunity because there are no parts of the protocol which he
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can actively change to modify the outcome; which is the same case for Passive-Gaussian
UNCs as well.

We do not analyse the behaviour of SimGUNC when both the agents are cheating, because
the behaviour of Passive-Gaussian UNC is not defined for this case. Moreover, this is not
relevant in the context of commitment as there are no security guarantees associated with
this case.

Figure 8.2: Channel structure in SimGUNC{γ2, δ2}(x) and how it simulates the behaviour of
a Passive-Gaussian UNC[γ2, δ2] with input x.

Remark 8.4. From claims 8.1 and 8.2, we can conclude that there exists no ϵ−sound,
ϵ−concealing, ϵ−binding k−bit commitment scheme over a Passive-Gaussian UNC[γ2, δ2]

when δ2 ≥ 2γ2, for small enough ϵ. (More precisely2 for ϵ <

(
k

1+k+k2k+2
k+1
2

)2

).

Claim 8.3. Let ϵ > 0. If there exists no ϵ−sound, ϵ−concealing, ϵ−binding commitment pro-
tocol over a Passive-Gaussian UNC[γ2, δ2], then there exists no such protocol over a Gaussian
UNC[γ2, δ2].

Proof. We will prove the contrapositive of this statement. We take a commitment protocol
P that is ϵ−sound, ϵ−concealing, ϵ−binding over a Gaussian UNC[γ2, δ2]. Then we show
that P satisfies the security guarantees over Passive Gaussian UNC[γ2, δ2] as well. Let c,
x, y(s) VA(s), VB(s) be the commit string, sent codeword, received codeword, and view
variables respectively as defined in Definition 3.1, but as functions of the channel state s
that is instantiated. Let us define new view variables V ′

A and V ′
B when the same protocol

P is carried out over a Passive Gaussian UNC. We have from the soundness criterion of
Definition 3.2 of P, that when both Alice and Bob are honest,

P(T (c,x, VB(s)) ̸= 1) ≤ ϵ ∀s ∈ [γ2, δ2] (8.9)

⇒ (T (c,x, V ′
B) ̸= 1) ≤ ϵ (8.10)

2This bound cannot be improved by increasing the number of channel uses.
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This is true because for the honest-honest case, V ′
B = (y(s = δ2),M) evaluates to a special

case of VB(s = δ2). From the concealment criterion of definition 3.3, for an honest Alice,

I(C, VB(s)) ≤ ϵ ∀s ∈ [γ2, δ2] (8.11)

⇒ I(C, V ′
B) ≤ ϵ (8.12)

To prove the correctness of above, let’s look at the view V ′
B when Bob is honest, and when

he is cheating separately. When he is honest V ′
B simply evaluates to VB(s = δ2) as above.

Now when Bob is cheating, consider a case when Alice send x over Passive Gaussian UNC
and Bob receives some z as the output, but is also able to tap into the channel to get an
intermediary output y that equates to y(s = γ2). We have V ′

B = (y, z,M). Because of the
Markov chain dependence x − y − z, I(C, V ′

B) = I(C, (y, z,M)) = I(C, (y,M)) which is
same as I(C, VB(s)) for s = γ2 from (8.11). From the bindingness criterion of Definition 3.4,
for an honest Bob, under any cheating strategy of Alice

P (T (c1,x1, VB(s)) = 1 & T (c2,x2, VB(s)) = 1) ≤ ϵ

∀c1, c2 ∈ C, c1 ̸= c2,x1,x2 ∈ X n, s ∈ [γ2,δ2] (8.13)

⇒ P (T (c1,x
′
1, V

′
B) = 1 & T (c2,x

′
2, V

′
B) = 1) ≤ ϵ

∀c1, c2 ∈ C, c1 ̸= c2,x1,x2 ∈X n (8.14)

Observing in a case by case basis over Passive Gaussian UNC we have V ′
B = (y(s = δ2,M))

when Alice is honest and V ′
B = (y(s = γ2,M)) when Alice is cheating. They evaluate to

VB(s) for s = δ2 and s = γ2 respectively. So we can substitute them in (8.13) to get (8.14).
Since T and VB anyways do not depend on V ′

A, (8.14) holds for any behaviour of Alice. From
(8.10), (8.12) and (8.14), protocol P is ϵ−sound, ϵ−concealing, ϵ−binding over a Passive
Gaussian UNC[γ2, δ2] also.

From Remark 8.4 and claim 8.3, we can say that for small enough ϵ (for ϵ less than

k2/(1 + k + k2k + 2
k+1
2 )2), and for δ2 ≥ 2γ2, there exists no k−bit commitment protocol

over a Gaussian UNC[γ2, δ2] (over any number of uses of the channel) that is ϵ−sound,
ϵ−concealing, ϵ−binding i.e., there exists no achievable protocol.

8.4 Achievability proof

We first present an overview of our achievability protocol following which we present the
actual protocol and then the security analysis within the possibility regime (δ2 < 2γ2). Our
protocol uses ideas from [DKS99,NBSI08,CDN20]; however, the specific protocol we present
for the Gaussian UNCs is novel to the best of our knowledge.

In our scheme, Alice first generates a random bit string Um ∈ {0, 1}m toward committing
string C ∈ [2nR]. Alice then uses an error correcting code, say C = (ψ, ϕ) where C ⊆ Rn

here (C is known to both parties) to encode this bit string Um to codeword X = ψ(Um) and
sends X over the Gaussian UNC[γ2,δ2] to Bob. Our error correcting code C is a spherical
code comprising equi-normed codewords (where all codewords reside on the surface of a n-
dimensional Euclidean ball). Bob receives a noisy version Y of the transmitted codeword
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X. We choose the rate R̄(C) of the error correcting code C sufficiently ‘large’; this ensures
that upon receiving a noisy observation Y of the transmitted codeword X, Bob decodes
a ‘large’ list L(Y) ⊆ C of codewords which are ‘typical’ w.r.t the observation Y (here
typicality is w.r.t. the underlying Gaussian UNC[γ2,δ2] ). Recall however that a cheating
Alice can privately change the noise variance in the Gaussian UNC[γ2,δ2] such an action
can ‘enlarge’ her set of spoofing codewords that she can present, if dishonest, in the reveal
phase. To restrict Alice’s potential dishonest behaviour, our protocol employs the classic
hash-challenge approach (inspired by [DKS99]). In particular, Bob initiates a two-round
hash challenge with Alice3 which essentially bind Alice to her choice of Um (remember Um

has a one-to-one mapping with X via the codebook C) in the commit phase thereby ensuring
Bob’s test T can detect any cheating attempt by Alice during the reveal phase. Essentially,
the first hash challenge reduces the number of confusable strings that Alice can use to confuse
Bob in the reveal phase from exponential to polynomial many in block-length n; the second
hash challenge further brings down the number of such bit strings to 1 (this precludes the
possibility of Bob being confused between two different bit string, say Um

1 , U
m
2 ∈ {0, 1}m,

thereby guaranteeing the binding guarantee). The strong randomness extractor extracts a
secret key (note that the leftover hash lemma [DRS04a] allows us to quantify the size of this
key). This key is then XOR-ed with the commit string c to realize a one-time pad scheme,
which conceals the committed string against Bob in the commit phase.

8.4.1 Achievable protocol for SER > 1

We now present our commitment protocol. Recall that when SER > 1 for the Gaussian
UNC[γ2,δ2] i.e., given elasticity E = δ2 − γ2 of the Gaussian UNC[γ2,δ2] we have P > E,
or P > δ2 − γ2. Alice and Bob fix an error correcting code C ⊆ Rn comprising an encoder
ψ : {0, 1}m → Rn and decoder ϕ : Rn → {0, 1}m

⋃
{0} with rate R̄ := 1

2
log( 1

1−
(
1− d̂

2

)2 ) − β̃

where dmin(C) = nd̂P is the minimum distance of the code C. The commitment rate of the
protocol is

R =
1

2
log

(
P

E

)
− 1

2
log

(
1 +

P

γ2

)
− β3. (8.15)

It can be noted that our choice of R is greater than zero only when SER > 1 i.e., P > E.
This expression for R is therefore chosen only for SEER > 1. Let G1 := {g1 : {0, 1}m →
{0, 1}n(R̄+ 1

2
log(E

P
)+β1)} be a 4n-universal hash family, where E := δ2−γ2 and β1 > 0 is a small

enough constant. Let G2 := {g2 : {0, 1}m → {0, 1}mβ2} be a 2−universal hash family, where
β2 > 0 is a small enough constant. Let E := {ext : {0, 1}n → {0, 1}nR} be a 2−universal
hash family, where β3 > 0 is chosen such that β3 > β1+β2.

4 Here are the commit and reveal
phases of our protocol:

Commit Phase: Alice seeks to commit to string C ∈ [2nR] and proceeds as follows:

3We need two rounds of hash challenge to circumvent a non-trivial rate loss that arises in the single hash
challenge due to the birthday paradox ; see [CDN20] where it is discussed in detail.

4Note that R can be made arbitrarily close to CREC .
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(C1) Given C, Alice first generates Um = (U1, U2, · · · , Um) ∼ Bernoulli(1/2) independent
and identically distributed (i.i.d.) bits.

(C2) Using code C = (ψ, ϕ), Alice picks the codeword X = ψ(Um) and sends it over the
Gaussian UNC[γ2,δ2] Let Bob receive Y over the noisy channel.

(C3) Bob creates a list L(y) of codewords in C given by:5

rClL(y) := {x ∈ C : n(γ2 − α1) ≤ ∥x− y∥2 ≤ n(δ2 + α1)}. (8.16)

(C4) Bob now initiates the two rounds of hash challenges for Alice. Bob first chooses his hash
function G1 ∼ Unif (G1). Bob sends the description of G1 to Alice over the two-way
noiseless link.

(C5) Using G1, Alice computes the hash G1(U
m) and sends the hash value, say ḡ1, to Bob

over the noiseless link.

(C6) Next, Bob initiates the second round of hash exchange by choosing another hash func-
tion G2 ∼ Unif (G2), and sends the description of G2 to Alice over the noiseless link.

(C7) Once again, Alice locally computes the hash value G2(X) and sends the hash value, ḡ2
to Bob over the noiseless link.

(C8) Alice now chooses an extractor function Ext ∼ Unif (E) and sends6 the value Q =
C ⊕ Ext(Um) along with the exact choice of the function Ext to Bob over the noiseless
link.

Reveal phase: The following operations comprise the reveal phase:

(R1) Alice announces (c̃, ũm) to Bob over the noiseless link.

(R2) Bob determines the codeword x̃ = x̃(ũm) = ψ(ũm).

(R3) Bob accepts c̃ if all the following four conditions are simultaneously satisfied:

(i) x̃ ∈ L(y), where y is Bob’s observation at the end of the commit phase,

(ii) g1(ũ
m) = ḡ1,

(iii) g2(ũ
m) = ḡ2,

(iv) c̃ = q ⊕ ext(ũm).

Else, he rejects c̃ and outputs ‘0’.

5Here the parameter α1 > 0 is chosen appropriately small.
6The operator ⊕ here denotes component-wise XOR.
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8.4.1.1 Positivity of rate R of our protocol P:

We first show that the rate R > 0 when δ2 <
(
1 + P

P+γ2

)
γ2, i.e., (δ2 − γ2) < Pγ2

P+γ2 . Toward

proving rate positivity, let us assume that (δ2 − γ2) = Pγ2

P+γ2 − η, for some η > 0. Recall that
the rate of the commitment protocol is

R =
1

2
log

(
P

E

)
− 1

2
log

(
1 +

P

γ2

)
− β3 (8.17)

(a)
=

1

2
log

(
P

δ2 − γ2

)
− 1

2
log

(
1 +

P

γ2

)
− β3 (8.18)

=
1

2
log

(
P

δ2 − γ2

)
− 1

2
log

(
P + γ2

γ2

)
− β3 (8.19)

=
1

2
log

(
Pγ2

(P+γ2)

δ2 − γ2

)
− β3 (8.20)

Given η > 0, for β3 = β3(η) > 0 small enough, it follows that R > 0. We now analyse and
prove the security guarantees in detail for the above defined (n,R)-commitment scheme:

8.4.1.2 ϵ−soundness analysis

For our protocol to be ϵ-sound, we essentially need to show that when both parties are honest,
Bob accepts C̃ = C with high probability (w.h.p.). Since Alice is honest, it follows directly
that it is sufficient to show that P (X ̸∈ L(Y)) ≤ ϵ for n large enough. This is because,
conditioned on the event {X ∈ L(Y)}, the rest of the three conditions, viz., (a) g1(ũm) = ḡ1,
(b) g2(ũ

m) = ḡ2, and (c) c̃ = q ⊕ ext(ũm) deterministically hold true when Alice and Bob
are both honest. The proof of the fact that P (X ̸∈ L(Y)) ≤ ϵ for n sufficiently large follows
from classic Chernoff bound for additive Gaussian channels.

8.4.1.3 ϵ−concealment analysis

Our approach uses the classic left-over hash lemma to show that the 2-universal hash func-
tion can be used as a strong randomness extractor to extract the ‘residual’ randomness in
the transmitted codeword X and hence Um (recall that X = ψ(Um)). It is well known that
a positive rate commitment protocol is ϵ−concealing, where ϵ > 0 is exponentially decreas-
ing in block length n, if it satisfies the capacity-based secrecy notion (cf. [DPP98, Def. 3.2])
and vice versa. We use a well established relation between capacity-based secrecy and the
bias-based secrecy (cf. [DPP98, Th. 4.1]) to prove that our protocol is ϵ-concealing.

To begin, we prove that our protocol satisfies bias-based secrecy by essentially proving
the perfect secrecy of the key Ext(X); here we crucially use the leftover hash lemma. Several
versions of this lemma exists (cf. [ILL89,DRS04a] for instance); we use the following:

Lemma 8.1. Let G = {g : {0, 1}n → {0, 1}l} be a family of universal hash functions. Then,
for any hash function G chosen uniformly at random from G, and W

∥(PG(W ),G − PUl,G)∥ ≤ 1

2

√
2−H∞(W )2l
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where Ul ∼ Unif
(
{0, 1}l

)
.

We seek to lower bound H∞(Um). Toward this, we seek to analyse the conditional min-
entropy of Um conditioned on the view of Bob (this quantity lower bounds the min-entropy of
interest). However, owing to the continuous alphabet of Bob’s observation over the channel
Y, we need to take a ‘discretization approach’ to first “quantize” the channel output, say
via Y∆, and then calculate the conditional min-entropy over such a quantized (and discrete)
variable Y∆. This is important since min-entropy and conditional min-entropy (as well as
their smooth “versions”) do not posses the properties we seek when the variables are con-
tinuous.

Our treatment follows [NBSI08,CT91]. Let Y be a continuous random variable in R and
∆ > 0 be some constant. Then, from the mean value theorem, there exists a yk such that

fY (yk) =
1

∆

∫ ∆(k+1)

∆k

fY (y)dy

Let X be a discrete random variable in X . Given a x ∈ X , the conditional PDF of y given
x is:

fY |X(yk|x) =
1

∆

∫ ∆(k+1)

∆k

fY |X(y|x)dy

Let Y ∆ represent the quantized version of the continuous random variable Y , which takes
value yk for every Y ∈ [∆k,∆(k + 1)], with probability PY ∆(yk) = fY (yk)∆. Further, the
joint probability distribution of the random variables XY ∆ is given as:

PXY ∆(x, yk) = PX(x)PY ∆|X(yk|x) = PX(x)fY |X(yk|x)∆

The quantized version of the conditional min-entropy is given by:

H∞(X|Y ∆) = inf
x,yk

(− log(PX|Y ∆(x|yk))) = inf
x,yk

log

(
fY (yk)∆

PX(x)fY |X(yk|x)∆

)

Now, for the string Um, note that for quantization via ∆ > 0, we have

H∞(Um|Y, G1(U
m), G1, G2(U

m), G2) = lim
∆→0

H∞(Um|Y∆, G1(U
m), G1, G2(U

m), G2)

where Y∆ is the vector of all quantised Y ∆. Furthermore, from the definition of smooth-
min-entropy, we know that

H∞(Um|Y∆, G1(U
m), G1, G2(U

m), G2) = lim
ϵ1→0

Hϵ1
∞(Um|Y∆, G1(U

m), G1, G2(U
m), G2)

To proceed, let us first lower bound Hϵ1
∞(Um|Y∆, G1(U

m), G1, G2(U
m), G2) for a given

ϵ1 > 0 (we specify the choice of ϵ1 later). Crucially, our lower bound will not depend on
the quantization parameter ∆; this allows us to immediately extend the same lower bound
to the limiting quantity: lim∆→0H

ϵ1
∞(Um|Y∆, G1(U

m), G1, G2(U
m), G2). We now state the

following lemma:
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Lemma 8.2. For any ϵ1 > 0, δ′ > 0 and n sufficiently large,

Hϵ1
∞(Um|Y∆, G1(U

m), G1, G2(U
m), G2) ≥ n

(
1

2
log

(
P

E

)
− 1

2

(
log

(
1 +

P

γ2

))
− β1 − β2

)
− log(ϵ−1

1 )− nδ′ (8.21)

The proof appears in Appendix C.2.
Since the lower bound does not depend on ∆ > 0, the following lemma is straight forward.

Note the change to the continuous random vectorY (instead ofY∆ as in the previous lemma)
as part of Bob’s view.

Lemma 8.3. For any ϵ1 > 0, δ′ > 0 and n sufficiently large,

Hϵ1
∞(Um|Y, G1(U

m), G1, G2(U
m), G2) ≥ n

(
1

2
log

(
P

E

)
− 1

2

(
log

(
1 +

P

γ2

))
− β1 − β2

)
− log(ϵ−1

1 )− nδ′ (8.22)

Next, we use Lemma 8.1 to show that the distribution of the secret key Ext(X) is sta-
tistically close to a uniform distribution thereby achieving bias-based secrecy. Let us fix
ϵ1 := 2−nα2 , where α2 > 0 is an arbitrary small constant. We make the following correspon-
dence in Lemma 8.1: G↔ Ext, W ↔ Um and l ↔ nR to get the following:

∥PExt(Um),Ext − PUl,Ext∥
(a)

≤ 1

2

√
2−H∞(Um)2nR

(b)

≤ 1

2

√
2−H∞(Um|Y∆,G1(Um),G1,G2(Um),G2)2nR

(c)

≤ 1

2

√
2
−n

(
1
2
log(P

E )−
1
2

(
log

(
1+ P

γ2

))
−β1−β2−α2−δ′

)
2
n
(

1
2
log(P

E )−
1
2

(
log

(
1+ P

γ2

))
−β3

)

=
1

2

√
2n(β1+β2+α2+δ′−β3))

(d)

≤ 2−nα3 (8.23)

where, n is sufficiently large so that δ′ > 0 is negligibly small such that α3 > 0. Here,

(a) follows directly from Lemma 8.1.

(b) follows as conditional min-entropy (under any ∆ > 0 sufficiently small) lower bounds
min-entropy. This also holds under the limit ∆ → 0.

(c) follows from the definition of R (cf. (8.15)) and Lemma 8.3

(d) follows from noting that β3 is chosen such that δ′ + β1 + β2 + α2 − β3 < 0; here, we
note that α2 is an arbitrarily chosen (small enough) constant, and δ′ > 0 can be made
arbitrarily small for n sufficiently large. As such, a choice of β3 > β1 + β2 is sufficient.
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From (8.23) and Lemma 8.1, it follows that n
(

1
2
log
(
P
E

)
− 1

2

(
log
(
1 + P

γ2

))
− β3

)
almost

uniformly random bits can be extracted which proves the security of the secret key; this
guarantees that our commitment protocol satisfies bias-based secrecy (cf. [DPP98, Def. 3.1]).

To conclude the concealment analysis, recall from our discussion earlier (see also [DPP98,
Th. 4.1]) that bias-based secrecy under exponentially decaying statistical distance, as in (8.23),
implies capacity-based secrecy. Since we have already shown that the protocol satisfies bias-
based secrecy with exponentially decaying security parameter, hence, the protocol satisfies
capacity-based secrecy. In particular, for n sufficiently large, I(C;VB) ≤ ϵ and our protocol
is ϵ-concealing.

8.4.1.4 ϵ−bindingness analysis

To analyse binding, we analyse the scenario where a potentially dishonest Alice seeks to
confuse Bob between two (or more) different commit bit strings in {0, 1}m, say ūm and ũm

(i.e., Bob’s test accepts two different commit strings). We seek to show that w.h.p our com-
mitment protocol precludes any such possibility.

To begin, a cheating Alice seeks to maximize the set of potential bit strings in {0, 1}m
that would appear potential candidates in the list L(y) generated by Bob. Toward the
same, a cheating Alice employs the following strategy: she first picks up a vector x ∈
S(0,

√
n(P − γ2)) in the commit phase. Next, she privately fixes the variance of the Gaussian

UNC[γ2,δ2] to the lowest value possible, i.e., γ2. Let us define Es := δ2 − s2. Note that
E = Eγ = δ2 − γ2. Let X = x be the transmitted vector and Y = y be the bit string
received by Bob’s over the BSC(s). Note that a cheating Alice need not transmit a codeword,
however x ∈ S(P ), i.e., the transmitted vector needs to satisfy the transmit power constraint
P. Alice can cheat successfully by confusing Bob in the reveal phase only if she can find two
distinct length-m binary strings, say ūm and ũm such that (i) if ψ(ūm) = x̄ and ψ(ũm) = x̃
then x′, x̃ ∈ L(y), and (ii) ūm and ũm pass the two rounds of sequential random hash
exchange challenge (w.r.t hash functions G1(·) and G2(·)). Let A denote all codewords in C
corresponding to such length-m bit strings. Then, the following claim shows that A can be
exponentially large.

Claim 8.4. Given any η > 0, for n sufficiently large,

|A| ≤ 2n(R̄+ 1
2
log(E

P
)+η). (8.24)

The proof appears in Appendix C.3. Note that, essentially, we can conclude that the
choice of s = γ2 is the ‘best’ choice for a cheating Alice (such a choice maximizes |A|), i.e.,
Alice can be no worse than when it privately fixes the Gaussian UNC[γ2,δ2] o an AWGN
channel with variance γ2. We will choose 0 < η < β1 later (cf. Claim 8.5).

We now show that our choice of hash functions G1(·) and G2(·) allows us to essentially
‘trim’ down this set A of ‘confusable’ vectors all the way down to none. Recall that Alice’s
choice in the commit phase is x. For a given hash value h1 ∈ {0, 1}n(R̄+ 1

2
log(E

P
)+β1) sent by
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Alice, let

Ii(h1) :=

{
1 if G1(u

m
i ) = h1

0 otherwise.
(8.25)

Ii(h1) is an indicator random variable which identifies if umi has a hash-collision under G1

with the hash value h1. Also, let

I(h1) :=

|A|∑
i=1

Ii(h1) (8.26)

denotes the total number of hash collisions with hash value h1. Then, the following holds
when 0 < η < β1:

Claim 8.5. P
(
∃h1 ∈ {0, 1}n(R̄+ 1

2
log(E

P
)+β1) : I(h1) > 8n+ 1

)
→ 0 exponentially in n as n→

∞.

The proof appears in Appendix C.4. This implies that the size of the ‘confusable’ set
after the first hash challenge via G1 for any h1 is larger that 8n + 1 with exponentially
small probability (in block length n). Conditioned on the event I(h1) < 8n+ 1, ∀h1, which
occurs with high probability (w.h.p.), we now analyse the size of the ‘confusable’ set after
the second hash challenge via G2; let Fh1 denote this set of ‘confusable’ vectors after the
second hash challenge for a given h1. We prove the following claim (proof in Appendix C.5):

Claim 8.6. For every h1 ∈ {0, 1}n(R̄+ 1
2
log(E

P
)+β1), we have for n sufficiently large

rClP
(
∃x ̸= x′∈Fh1 : G2(u

m)=G2(u
′m)
∣∣I(h1)≤8n+ 1

)
≤ 2−n

β2
2 (8.27)

As the above claim holds for every h1, and noting that7 β2 > 0, we now choose n large
enough to conclude that our commitment protocol is ϵ−binding.

8.4.2 Achievable protocol for SER < 1

The protocol would be same as the one proposed in the previous section for SER ≤ 1 case
except that the value of R is chosen to be

R =
1

2
log

(
P

δ2 − γ̃2

)
− 1

2
log

(
1 +

P

γ2

)
− β3 (8.28)

When δ2 ≤
(
1 + P

P+γ2

)
γ̃2, the expression for R would bclearly evaluate to be positive. The

analysis for soundness would follow from a similar Chernoff bound argument as was with
the previous case. The proof for concealment and bindingness varies slightly as the choice
of hash functions and randomness extractors would be different. We skip the details here.

7Recall that β2 > 0 is a fixed parameter in our protocol.
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Chapter 9

Conclusion

In a short summary this thesis explains the commitment problem and explores its realisation
over noisy channels. We revise some noisy channel models from some previous studies and
their related results. Through chapter 5, we look at an unreliable general class of chan-
nels, the Compound-DMCs and find a commitment capacity expression for the same. While
studying the state-awareness models, a non trivial observation we make is that, state aware-
ness at Alice’s end seemingly has a lower converse bound expression than Alice not being
state aware. While Bob being aware of the state doesn’t degrade the capacity. However,
at least for reduction to Compound-BSCs, these two expressions evaluate to the same ca-
pacity value, as is also apparent in our earlier work [YMBM21]. In chapter 6, we study the
commitment capacity expression over RECs. This along with the capacity expressions we
had from earlier for ECs, UNCs and CBSCs aloow us to observe some interesting trends in
commitment capacity plots. We observe an interplay between the two forms of unreliabil-
ity compoundness and elasticity. While channels with exclusively one form of unreliability,
Compound-BSCs (compoundness) and ECs, RECs (elasticity) have positive commitment
throughputs for all values of parameters γ, δ; channel with combined form of unreliability,
UNC has positive commitment throughput only for δ < γ ∗ γ from its capacity expression
in (4.7). Our results also shed light on asymmetry in the effect of one-sided elasticity on
commitment throughput. This has interesting consequences as a similar one-sided elastic-
ity exhibits no such asymmetry when parties are only honest-but-curious (and not malicious).

With a motivation to better understand these trends, we looked at the Asymmetric-
UNCs. We completely characterised the possibility region of commitment. We conjecture
that the capacity expression actually evaluates to the lower bound in theorem 7.2. An in-
formation theoretic converse proof should fully settle the commitment characterisation over
the assumed parameter ranges. Outside the assumed ranges, though there is a gap between
the impossibility regime and the achievable protocols’ regime.

Over Gaussian-UNCs too we were able to fully characterise the commitment possibility
regime unconstrained inputs and for SER > 1. This is a surprise considering AWGN
channels have infinite capacity for even the tightest power constraints (that are greater than
zero). Moreover, our achievable schemes also indicate that even within the possibility regime,
the throughputs are finite over non-trivial Gaussian-UNCs.
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9.1. FUTURE SCOPES

9.1 Future Scopes

With these observations we have in mind to extend our study to the following in the future.

• We seek to extend this study to completely study the asymmetric-UNCs and extend
to more general channel models as well.

• There is some gap in the achievability and impossibility analysis of Asymmetric-AUNCs
over regimes where γ is less than one of γA, γB. An information theoretic converse is
also still open.

• There is also a gap between the possibility and impossibility characterisations of the
Gaussian-UNCs for when SER < 1. We would like to fill that in too.

• Quantum bit commitment is another area we would like to explore. [LC97] showed
that commitment is impossible over noiseless quantum channels. However, several
weaker variants have been studied and found to show positive throughput in [BCH+08].
Unreliable versions of noisy quantum channels could also be explored.
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Chapter 10

Publications

(J) denotes a journal publication and (C) denotes a conference proceeding. (*) denotes that
the author names are in alphabetical order.

List of works from this thesis under preperation:

(J) Mamindlapally, M., Yadav, A.K., Mishra, M. and Budkuley, A.J., 2021, July. Com-
mitment capacity under cost constraints. In 2021 IEEE Transactions on Information
Theory. IEEE.

(J) Yadav, A.K., Mamindlapally, M., Budkuley, A.J. and Mishra, M., 2021, July. Com-
mitment over Compound Binary Symmetric Channels. In 2021 IEEE Transactions on
Communications. IEEE.

(C)* Budkuley, A.J., Joshi, P., Mamindlapally, M. and Yadav, A.K., 2021. On the (Im)possibility
of Commitment over Gaussian Unfair Noisy Channels. In 2022 IEEE Information The-
ory Workshop (ITW). IEEE.

(C)* Budkuley, A.J., Joshi, P., Mamindlapally, M. and Yadav, A.K., 2021. On the (Im)possibility
of Commitment over Asymmetric Unfair Noisy Channels.

List of works from this thesis published:

(J)* A. J. Budkuley, P. Joshi, M. Mamindlapally and A. K. Yadav, “On Reverse Elastic
Channels and the Asymmetry of Commitment Capacity Under Channel Elasticity,”
in IEEE Journal on Selected Areas in Communications, vol. 40, no. 3, pp. 862-870,
March 2022, doi: 10.1109/JSAC.2022.3142304.

(C) A. K. Yadav, M. Mamindlapally, P. Joshi and A. J. Budkuley, “On Commitment over
General Compound Channels,” 2022 14th International Conference on COMmunica-
tion Systems & NETworkS (COMSNETS), 2022, pp. 488-496, doi: 10.1109/COM-
SNETS53615.2022.9668465.

(C)* A. J. Budkuley, P. Joshi, M. Mamindlapally and A. K. Yadav, “On the Commit-
ment Capacity of Reverse Elastic Channels,” 2021 IEEE Information Theory Workshop
(ITW), 2021, pp. 1-6, doi: 10.1109/ITW48936.2021.9611485.
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Here are two releavant published works of the author from his earlier (bachelor) thesis
[Mam21]:

(C) A. K. Yadav, M. Mamindlapally, A. J. Budkuley and M. Mishra, ”Commitment over
Compound Binary Symmetric Channels,” 2021 National Conference on Communica-
tions (NCC), 2021, pp. 1-6, doi: 10.1109/NCC52529.2021.9530060.

(C) M. Mamindlapally, A. K. Yadav, M. Mishra and A. J. Budkuley, ”Commitment Ca-
pacity under Cost Constraints,” 2021 IEEE International Symposium on Information
Theory (ISIT), 2021, pp. 3208-3213, doi: 10.1109/ISIT45174.2021.9518204.
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Appendix A

Appendix Compound-DMCs

A.1 Proof of lemma 5.1

Proof of lemma. Recall that VB denotes the view of Bob at the end of commit phase.
Let us define1 c̃ := argmaxc∈[2nR] T (c̃,X, VB). We now bound P(Ĉ ̸= C), where Ĉ =

Ĉ(VB,X) = c̃. As the code is ϵn-binding for every s ∈ S, we know that ∀s ∈ S

P
(
T (c̄, X̄, VB) = 1 & T (ĉ, X̂, VB) = 1

∣∣∣ s) ≤ ϵn (A.1)

for any two distinct (c̄, X̄) and (ĉ, X̂). For the given decoder, we have

P(Ĉ ̸= C) = P(Ĉ = 0) + P(Ĉ ̸= C|C ̸= 0)

≤ ϵn + ϵn

= 2ϵn. (A.2)

where in the penultimate inequality, the first part follows from noting that Pn is ϵn-binding,
and the second part follows from the fact that conditioned on Pn being ϵn-binding, the
probability that Ĉ is different from C is at most ϵn due to Pn being ϵn-sound.

We now use Fano’s inequality (cf. [GK11]) to bound the conditional entropy.

1

n
H(C|X, VB) ≤

1

n

(
1 + P(Ĉ ̸= C)nR

)
(A.3)

≤ 1

n
+ 2ϵnR

≤ ϵ′′n (A.4)

where ϵ′′n → 0 as n→ ∞. This completes the proof of the lemma.

1Although Bob’s test T is a randomized test, it can be shown that one can construct from T a deterministic
test with essentially the same soundness and bindingness performance (cf. []). Hence, for the rest of the
converse, we consider that Bob’s test is a deterministic function; as such, c̃ is well defined for such a
deterministic test.
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A.2. PROOF OF CLAIM ??

A.2 Proof of claim 5.1

Proof. Recall that the collision entropy can be bounded from below by min-entropy. There-
fore, we have the following equation:

Hc(X|Y = y, J = j,X|J = x|j)

≥ H∞(X|Y = y, J = j,X|J = x|j)

≥ min
y,j,x|j

H∞(X|Y = y, J = j,X|J = x|j)

= H∞(X|Y, J,X|J) (A.5)

Therefore, we begin by establishing a lower bound on conditional min-entropy using chain
rules on it’s smooth version.

Hϵ1
∞(X|Y, J,X|J)

(a)

≥ H∞(X,X|J |Y, J)−H0(X|J |Y, J)− log(ϵ−1
1 )

(b)
= H∞(X|Y, J) +H∞(X|J |Y, J,X)

−H0(X|J |Y, J)− log(ϵ−1
1 )

(c)
= H∞(X|Y, J)−H0(X|J |Y, J)− log(ϵ−1

1 )

(d)
= H∞(X|Y)−H0(X|J |Y, J)− log(ϵ−1

1 )

(e)

≥ (H(X|Y)− ξ′)−H0(X|J |Y, J)− log(ϵ−1
1 )

(f)

≥ n(min
s
H(X|Ys)− ξ)− nζ − log(ϵ−1

1 )

(g)
= n(min

s
H(X|Ys)− ξ − ζ − κ′)

(h)
= n(min

s
H(X|Ys)− ζ ′) (A.6)

Here,

(a) follows from the chain rule for smooth min-entropy; see Claim C.1 and substitute µ = ϵ1,
µ1 = 0 and µ2 = 0 in (C.3).

(b) from the chain rule for min-entropy; see Claim C.1 and and substitute µ = 0 and µ′ = 0
in (C.2).

(c) follows from the fact that X|J is deterministic function of X and J .

(d) follows due to the Markov chain X ↔ Y ↔ J .

(e) follows from [NBSI08, Th. 1] which allows us to lower bound H∞(X|Y) using H(X|Y)
for a large n.
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A.2. PROOF OF CLAIM ??

(f) follows from noting that the worst-case scenario channel law is minsH(X|Ys) and from
the fact that X|J ∈ X nζ .

(g) follows from setting ϵ = 2−κ′n, where κ′ > 0 for sufficiently large n.

(h) Noting that κ′ can be arbitrarily small for sufficiently large n, and ζ ′ = ξ + ζ.

Therefore, from (A.5) and (A.6) we have the required lower bound on the conditional collision
entropy.

83



Appendix B

Appendix RECs

B.1 Proof of lemma 6.1

Proof. We use the fact that Pn is ϵn-sound and ϵn-binding in this proof; furthermore, we
can show that every protocol Pn can essentially recover the commit string under a ‘noisy’
version Z of X coupled with Y (we use Fano’s inequality here).

Let us define1 ĉ(Z, VB) := argmaxc∈[2nR] T (c,Z, VB). Here we crucially use the fact that
for Alice’s assumed cheating strategy where she fixes the channel to Bob as BSC(s), s ∈ [γ, δ],
the effective channel from Z to Y is a BSC with crossover probability κs⊗s = δ under every
s ∈ [γ, δ].

We now bound P(Ĉ ̸= C), where Ĉ = ĉ(Z, VB). As the code is ϵn-binding, it follows that

P
(
T (c̄, X̄, VB) = 1 & T (ĉ, X̂, VB) = 1

)
≤ ϵn

for any two distinct (c̄, X̄) and (ĉ, X̂) such that c̄ ̸= ĉ. Furthermore, as the code is ϵn-sound,

P (T (c,Z, VB) = 1) ≥ 1− ϵn.

where we crucially use the fact that Z to Y is a BSC(δ) channel. Note that for the converse,
we assume an averaged (over commit strings C) soundness criterion, where we replace the
‘max’ in (8.1) with an average over C.2 Thus, for the given decoder, we then have

P(Ĉ ̸= C) = P(Ĉ = 0) + P(Ĉ ̸= C|Ĉ ̸= 0)

≤ ϵn + ϵn

≤ 2ϵn.

where in the penultimate inequality, the first part follows from noting that Pn is ϵn-binding,
and the second part follows from the fact that conditioned on Pn being ϵn-binding, the
probability that Ĉ = Ĉ(Z, VB) is different from C is at most ϵn due to Pn being ϵn-sound.

1Although Bob’s test T is a randomized test, it can be shown that one can construct from T a deterministic
test with essentially the same soundness and bindingness performance. Hence, for the rest of the converse,
we consider that Bob’s test is a deterministic function; as such, ĉ is well defined for such a deterministic test.

2This is a stronger converse as impossibility under the average criterion implies impossibility over the
maximal criterion in (8.1).
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B.2. PROOF OF LEMMA ??

We now use Fano’s inequality (cf. [GK11]) to bound the conditional entropy.

H(C|Z, VB) ≤ 1 + P(Ĉ ̸= C)nR

≤ nϵ′n

where ϵ′n(ϵ) :=
1
n
+ 2ϵnR → 0 as ϵn → 0.

B.2 Proof of lemma 8.2

Proof. Before we start with the proof, we recap (without proof) a few well known results.

Claim B.1 (Min-entropy [VDTR13]). For any 0 ≤ µ, µ′, µ1, µ2 < 1 and any set of jointly
distributed random variables (X, Y,W ), we have

Hµ+µ
′

∞ (X, Y |W )−Hµ
′

∞(Y |W )

≥ Hµ
∞(X|Y,W ) (B.1)

≥ Hµ1
∞ (X, Y |W )−Hµ2

0 (Y |W )− log

[
1

µ− µ1 − µ2

]
(B.2)

Claim B.2 (Max-entropy [VDTR13,RW05]). For any 0 ≤ µ, µ′, µ1, µ2 < 1 and any set of
jointly distributed random variables (X, Y,W ), we have

Hµ+µ
′

0 (X, Y |W )−Hµ
′

0 (Y |W )

≤ Hµ
0 (X|Y,W ) (B.3)

≤ Hµ1

0 (X, Y |W )−Hµ2
∞ (Y |W ) + log

[
1

µ− µ1 − µ2

]
(B.4)
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B.2. PROOF OF LEMMA ??

Now consider the following for any ϵ1 > 0:

Hϵ1
∞(X|Y, G1(X), G1, G2(X), G2)

(a)

≥ H∞(X, G1(X), G2(X)|Y, G1, G2)

−H0(G1(X), G2(X)|Y, G1, G2)− log(ϵ−1
1 )

(b)
= H∞(X|Y, G1, G2) +H∞(G1(X), G2(X)|Y, G1, G2,X)

−H0(G1(X), G2(X)|Y, G1, G2)− log(ϵ−1
1 )

(c)
= H∞(X|Y, G1, G2)

−H0(G1(X), G2(X)|Y, G1, G2)− log(ϵ−1
1 )

(d)
= H∞(X|Y)−H0(G1(X), G2(X)|Y, G1, G2)− log(ϵ−1

1 )

(e)

≥ H∞(X|Y)−H0(G1(X)|G2(X),Y, G1, G2)

−H0(G2(X)|Y, G1, G2)− log(ϵ−1
1 )

(f)

≥ (H(X|Y)− ζ ′)−H0(G1(X)|G2(X),Y, G1, G2)

−H0(G2(X)|Y, G1, G2)− log(ϵ−1
1 )

(g)

≥ n(H(δ)− ζ)− n(H(κ) + β1 + β2)− log(ϵ−1
1 )

= n(H(δ)− ζ −H(κ)− β1 − β2)− log(ϵ−1
1 ) (B.5)

where we have

(a) from the chain rule for smooth min-entropy; see Claim C.1 and substitute µ = ϵ1, µ1 = 0
and µ2 = 0 in (C.3).

(b) from the chain rule for min-entropy; see Claim C.1 and substitute µ = 0 and µ′ = 0
in (C.2).

(c) from the fact that G1(X) and G2(X) are deterministic functions of G1, G2 and X.

(d) by the Markov chain X ↔ Y ↔ (G1, G2).

(e) from the chain rule for max-entropy; see Claim C.2 and substitute µ = 0 and µ′ = 0
in (C.4).

(f) from [NBSI08, Th. 1] which allows us to lower bound H∞(X|Y) in terms of H(X|Y)
(via an appropriate smooth-min-entropy quantity); here ζ > 0 can be made arbitrarily
small for n sufficiently large

(g) by noting that the crossover probability is δ and from definition of max-entropy (also
noting that the range of G1 and G2 is {0, 1}n(H(κ)+β1) and {0, 1}nβ2 respectively).
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B.2.1 Proof of claim 8.4

Proof. From the definition of A, we have

|A|
(a)

≤ 2n(H(κs)+η)

(b)

≤ 2n(H(κ)+η) (B.6)

where

(a) follows from noting that an honest Bob will accept a vector x′ if dH(x
′y) ∈ [n(δ −

α1), n(δ+α1)]; since Alice has fixed the REC[γ, δ] to a BSC(s), the total number of such
vectors are at most 2n(H(κs)+η), where η > 0 choice can be arbitrary, for n sufficiently
large.

(b) follows from noting that κs ≤ κ = δ−γ
1−2γ

< 1/2.

This concludes the proof of the claim.

B.3 Proof of claim 8.5

Recall that G1 ∼ Unif (G1). Then,

EG1 [I(h1)]
(a)

≤
|A|∑
i=1

2−(n(H(κ)+β1))

(b)

≤ 2n(η−β1)

(c)

≤ 2−nβ̃1 (B.7)

which is independent of h1. Here (a) follows from the definition of G1, (b) follows from Claim 8.4
and noting that β1 > η; letting β̃1 := β1 − η > 0 gives us (c). Note that for n sufficiently
large, we have E[I(h1)] ≤ 1, ∀h1.

We now need the following result by Rompel [BR94] to proceed:

Lemma B.1 ( [BR94]). Let X1, X2, X3....Xm ∈ [0, 1] be k-wise independent random vari-
ables, where k is an even and positive integer. Let X :=

∑m
i=1Xi, µ := E[X], and ∆ > 0 be

a constant. Then,

P (|X − µ| > ∆) < O

((
kµ+ k2

∆2

)k/2
)

(B.8)

We now make the following correspondence: k ↔ 4n, ∆ ↔ 2k = 8n. Then, using the
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union bound, we get:

P
(
∃h1 ∈ {0, 1}n(H(κ)+β1) : I(h1) > 8n+ 1

)
(B.9)

≤
∑

h1∈{0,1}n(H(κ)+β1)

P (I(h1) > 8n+ 1) (B.10)

(a)

≤ 2n(H(κ)+β1)O
((kµ+ k2

∆2

)k/2)
(b)

≤ 2n(H(κ)+β1)O
((1 + k

4k

)k/2)
< 2n(H(κ)+β1)O(2−k/2)

= 2n(H(κ)+β1)O(2−n) (B.11)

where we have

(a) from Lemma C.2

(b) by noting that for n sufficiently large, µ = E[I(h1)] ≤ 1, ∀h1, and making the correspon-
dence ∆ ↔ 2k.

Now note that (C.16) tends to zero exponentially fast as we have (H(κ) + β1) < 1. This
completes the proof of claim.

B.3.1 Proof of claim 8.6

Proof. Recall the definition of Fh1 , and let F := maxh1 Fh1 . Note that |F| ≤ 8n + 1.
Noting that G2 ∼ Unif (G2), where G2 = {g2 : {0, 1}n → {0, 1}nβ2}, we have for every
h1 ∈ {0, 1}n(H(κ)+β1),

P
(
∃x ̸= x′ ∈ Fh1 : G2(x) = G2(x

′)
∣∣I(h1) ≤ 8n+ 1

)
(a)

≤
(
F
2

)
P (G2(x) = G2(x

′))

(b)

≤
(
8n+ 1

2

)
2−nβ2

< (8n+ 1)(8n)2−nβ2

≤ 2−n
β2
2 for n large enough (B.12)

where (a) follows from the definition of F , and using the union bound (on distinct pairs of
vectors in F); we get (b) from the definition of G2. This completes the proof of the claim.
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Appendix C

Appendix Asymmetric-UNCs and
Gaussian-UNCs

C.1 Proof of claim 8.1

Proof. Consider any general commitment protocol from Definition ??, realised using a noise-
less channel. Let’s say we have Alice’s commit string c, exchanged messagesm, and codeword
x which Bob receives noiselessly as y = x. This would mean that, at the end of the commit
phase, Alice and Bob’s views are VA = (c,x,m) and VB = (x,m), respectively. Let Alice
reveal some c̃, x̃, after which Bob performs a test T (c̃, x̃, VB). Clearly, it is possible to for-
mulate a test that fails for x̃ ̸= x, because Bob’s View VB contains x. Let’s therefore take
such a test T . Now, consider an event E,

E = {T (c,x, VB) = 1}
⋂

c′ ̸=c∈C

{T (c′,x, VB) = 0}

⇒ ¬E = {T (c,x, VB) = 0}
⋃

c′ ̸=c∈C

{T (c′,x, VB) = 1}

⇒ P[¬E] = P[T (c,x, VB) = 0]

+
∑

c′ ̸=c∈C

P
[
T (c′,x, VB) = 1|T (c,x, VB) = 1

]
≤ ϵ1 + |C|ϵ3 (C.1)

The last step follows from the ϵ1−soundness and ϵ3−bindingness property of the protocol.
Also observe that if the event E were true, Bob could directly estimate Alice’s string c with
certainty, by simply performing the test T over all strings in C. Now,

H(C|VB) ≤ H(C,E|VB)
= H(E|VB) +H(C|VB, E)
≤ H(E) + P[E] ·H(C|VB, E = True)

+ P(¬E) ·H(C|VB, E = False)

≤ 2
√
ϵ1 + |C|ϵ3 + 0 + (ϵ1 + |C|ϵ3) log |C|
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Now,

⇒ I(C;VB) = H(C)−H(C|VB)
≥ (1− ϵ1 − |C|ϵ3) log |C| − 2

√
ϵ1 + |C|ϵ3

ϵ2 ≥ (1− ϵ1 − |C|ϵ3) log |C| − 2
√
ϵ1 + |C|ϵ3

The reduction of H(E) follows from its upperbound H2(ϵ1 + |C|ϵ3) from (C.1) and a general
upperbound on binary entropy functionH2(p) for general p ∈ [0, 1],H2(p) ≤ 2 ln 2

√
p(1− p) ≤

2
√
p.

C.2 Proof of lemma 8.2

First, we recap (without proof) a few well known results.

Claim C.1 (Min-entropy [VDTR13]). For any µ, µ′, µ1, µ2 ∈ [0, 1) and any set of jointly
distributed random variables (X, Y,W ), we have

rCl Hµ+µ
′

∞ (X, Y |W )−Hµ
′

∞(Y |W )

≥ Hµ
∞(X|Y,W ) (C.2)

≥ Hµ1
∞ (X, Y |W )−Hµ2

0 (Y |W )− log

[
1

µ− µ1 − µ2

]
(C.3)

Claim C.2 (Max-entropy [VDTR13,RW05]). For any µ, µ′, µ1, µ2 ∈ [0, 1) and any set of
jointly distributed random variables (X, Y,W ), we have

rCl Hµ+µ
′

0 (X, Y |W )−Hµ
′

0 (Y |W )

≤ Hµ
0 (X|Y,W ) (C.4)

≤ Hµ1

0 (X, Y |W )−Hµ2
∞ (Y |W ) + log

[
1

µ− µ1 − µ2

]
(C.5)
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Now consider the following for any ϵ1 > 0:

Hϵ1
∞(Um|Y∆, G1(U

m), G1, G2(U
m), G2)

(a)

≥ H∞(Um, G1(U
m), G2(U

m)|Y∆, G1, G2)

−H0(G1(U
m), G2(U

m)|Y∆, G1, G2)− log(ϵ−1
1 )

(b)
= H∞(Um|Y∆, G1, G2) +H∞(G1(U

m), G2(U
m)|Y∆, G1, G2, U

m)

−H0(G1(U
m), G2(U

m)|Y∆, G1, G2)− log(ϵ−1
1 )

(c)
= H∞(Um|Y∆, G1, G2)

−H0(G1(U
m), G2(U

m)|Y∆, G1, G2)− log(ϵ−1
1 )

(d)
= H∞(Um|Y∆, G1, G2)−H0(G1(U

m), G2(U
m)|Y∆, G1, G2)− log(ϵ−1

1 )

(e)

≥ H∞(Um|Y∆, G1, G2)−H0(G1(U
m)|G2(U

m),Y∆, G1, G2)

−H0(G2(U
m)|Y∆, G1, G2)− log(ϵ−1

1 )

(f)

≥ H∞(Um|Y∆, G1, G2)− n

(
R̄ +

1

2
log

(
E

P

)
+ β1

)
− nβ2 − log(ϵ−1

1 ) (C.6)

(a) from the chain rule for smooth min-entropy; see Claim C.1 and substitute µ = ϵ1, µ1 = 0
and µ2 = 0 in (C.3).

(b) from the chain rule for min-entropy; see Claim C.1 and substitute µ = 0 and µ′ = 0
in (C.2).

(c) from the fact that G1(U
m) and G2(U

m) are deterministic functions of G1, G2 and Um.
The quantity
H∞(G1(U

m), G2(U
m)|Y∆, G1, G2, U

m) = 0 irrespective of Y∆.

(d) by the Markov chain X ↔ Y ↔ (G1, G2).

(e) from the chain rule for max-entropy; see Claim C.2 and substitute µ = 0 and µ′ = 0
in (C.4).

(f) by noting that the range of G1 is {0, 1}n(R̄+ 1
2
log(E

P
)+β1) and range of G2 is {0, 1}mβ2 .

We now lower bound the first term in (C.6), i.e., H∞(Um|Y∆, G1, G2). Here is the lemma
with the lower bound.

Lemma C.1. For any δ′ > 0 small enough and n sufficiently large, we have

H∞(Um|Y∆, G1, G2) ≥ H(Um)− I(Um;Y)− nδ′. (C.7)

Proof. To prove this result, we first recap the following known result which relates condi-
tional smooth-min-entropy and conditional (Shannon) entropy. We use the specific version
in [NBSI08] (cf. [NBSI08, Thm. 1]).
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Theorem C.1 ( [NBSI08]). Let PV n,Wn be a distribution over finite alphabets Vn × Wn.
Then, for any constants δ′, ϵ′ > 0 and n sufficiently large, we have

Hϵ′

∞(Un|V n) ≥ H(Un|V n)− nδ′. (C.8)

We now simplify H∞(Um|Y∆, G1, G2) as follows:

H∞(Um|Y∆, G1, G2)
(a)
= lim

ϵ′→0
Hϵ′

∞(Um|Y∆, G1, G2)

(b)

≥ lim
ϵ′→0

H(Um|Y∆, G1, G2)− nδ′

= H(Um|Y∆, G1, G2)− nδ′

(c)
= H(Um)− I(Um;Y∆, G1, G2)− nδ′ (C.9)

where

1. follows from the definition of smooth-min-entropy.

2. follows from Theorem C.1.

3. follows from chain rule of mutual information.

Let us now simplify I(Um;Y∆, G1, G2) in (C.9) as ∆ → 0. Note that

lim
∆→0

I(Um;Y∆, G1, G2)
(a)
= I(Um;Y, G1, G2)

(b)
= I(Um;Y) + I(Um;G1, G2|Y)

(c)
= I(Um;Y). (C.10)

where

(a) follows from definition of Y∆ and the mutual information I(Um;Y∆, G1, G2) and their
limiting values (as ∆ → 0) .

(b) follows from the chain rule of mutual information

(c) follows from the Markov chain Um ↔ X ↔ Y ↔ (G1, G2).

Putting together (C.9) and (C.10), we have (C.7). This completes the proof of the lemma.
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Coming back to the main proof of Lemma 8.2, let us now simplify (C.6) as follows:

Hϵ1
∞(Um|Y∆, G1(U

m), G1, G2(U
m), G2)

(a)

≥ (H(Um)− I(Um;Y)− nδ′)− n

(
R̄ +

1

2
log

(
E

P

)
+ β1

)
− nβ2 − log(ϵ−1

1 )

(b)

≥ H(Um)− I(X;Y)− n

(
R̄ +

1

2
log

(
E

P

)
+ β1

)
− nβ2 − log(ϵ−1

1 )− nδ′

(c)

≥ H(Um)− nCAWGN(γ
2)− n

(
R̄ +

1

2
log

(
E

P

)
+ β1

)
− nβ2 − log(ϵ−1

1 )− nδ′

(d)
= nR̄− n

(
1

2
log

(
1 +

P

γ2

))
− n

(
R̄ +

1

2
log

(
E

P

)
+ β1

)
− nβ2 − log(ϵ−1

1 )− nδ′

= n

(
R̄− 1

2
log

(
1 +

P

γ2

))
− n

(
R̄ +

1

2
log

(
E

P

)
+ β1

)
− nβ2 − log(ϵ−1

1 )− nδ′

(e)
= n

(
1

2
log

(
P

E

)
− 1

2
log

(
1 +

P

γ2

))
− n (β1 + β2)− log(ϵ−1

1 )− nδ′

(C.11)

(a) follows from Lemma C.1.

(b) follows from the Markov chain Um ↔ X ↔ Y and the data processing inequality.

(c) follows from noting that I(X;Y) ≤ nCAWGN(γ
2) where CAWGN(γ

2) := 1
2
log
(
1 + P

γ2

)
is

the capacity of an AWGN channel with noise variance γ2 under input power constraint
P . Note that we need to allow the possibility that a cheating Bob may privately fix an
AWGN channel where the variance may take any value in the range [γ2, δ2].

(d) follows from noting that H(Um) = nR̄ and substituting for CAWGN(γ
2).

(e) follows from cancelling the term nR̄ and rearranging the terms.
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C.3 Proof of claim 8.4

From the definition of A, we have

|A|
(a)

≤ 2n(H(Es)+η)

(b)

≤ 2n(H(E)+η) (C.12)

where

(a) follows from noting that an honest Bob will accept a vector x′ if dH(x
′y) ∈ [n(δ −

α1), n(δ+α1)]; since Alice has fixed the REC[γ, δ] to a BSC(s), the total number of such
vectors are at most 2n(H(Es)+η), where η > 0 choice can be arbitrary, for n sufficiently
large.

(b) follows from noting that Es ≤ E = δ−γ
1−2γ

< 1/2.

C.4 Proof of claim 8.5

The proof of this claim follows by standard concentration techniques. We first bound the
expected number of hash-collisions EG1 [I(h1)] for a given hash value h1. In particular, we
show that for n large enough, the expected number of such collisions EG1 [I(h1)] < 1. We
now concentrate using this expected value and identify the ‘bad’ hash values, say h′, where
the expected number of hash collisions EG1 [I(h

′)] exceeds the average value by a ‘non-trivial’

amount. As G1 ∼ Unif (G1), we have EG1 [I(h1)] ≤
∑|A|

i=1 2
−(n(H(E)+β1)) ≤ 2n(η−β1), where the

final inequality follows from Claim 8.4 and noting that β1 > η. We set β̃1 := β1 − η > 0 to
get EG1 [I(h1)]≤2−nβ̃1 . Hence, for n sufficiently large, we have E[I(h1)] ≤ 1, ∀h1. We need
the following result to proceed:

Lemma C.2 ( [BR94]). Let X1, X2, X3....Xm ∈ [0, 1] be k-wise independent random vari-
ables, where k is an even and positive integer. Let X :=

∑m
i=1Xi, µ := E[X], and ∆ > 0 be

a constant. Then,

P (|X − µ| > ∆) < O

((
kµ+ k2

∆2

)k/2
)

(C.13)

We make the following correspondence: k ↔ 4n, ∆ ↔ 2k = 8n. Then, using the union
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bound, we get:

P
(
∃h1 ∈ {0, 1}n(H(E)+β1) : I(h1) > 8n+ 1

)
(C.14)

≤
∑

h1∈{0,1}n(H(E)+β1)

P (I(h1) > 8n+ 1) (C.15)

(a)

≤ 2n(H(E)+β1)O
((kµ+ k2

∆2

)k/2)
(b)

≤ 2n(H(E)+β1)O
((1 + k

4k

)k/2)
< 2n(H(E)+β1)O(2−k/2)

= 2n(H(E)+β1)O(2−n) (C.16)

where we have

(a) from Lemma C.2

(b) by noting that for n sufficiently large, µ = E[I(h1)] ≤ 1, ∀h1, and making the correspon-
dence ∆ ↔ 2k.

Now note that (C.16) tends to zero exponentially fast as we have (H(E) + β1) < 1.

C.5 Proof of claim 8.6

Recall the definition of Fh1 , and let F := maxh1 Fh1 . Note that |F| ≤ 8n + 1. Not-
ing that G2 ∼ Unif (G2), where G2 = {g2 : {0, 1}n → {0, 1}nβ2}, we have for every h1 ∈
{0, 1}n(H(E)+β1),

P
(
∃x ̸= x′ ∈ Fh1 : G2(x) = G2(x

′)
∣∣I(h1) ≤ 8n+ 1

)
(a)

≤
(
F
2

)
P (G2(x) = G2(x

′))

(b)

≤
(
8n+ 1

2

)
2−nβ2

≤ 2−n
β2
2 for n large enough, (C.17)

where (a) follows from the definition of F , and using the union bound (on distinct pairs of
vectors in F); we get (b) from the definition of G2.
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